㈠ 趣味数学内容是什么
《趣味数学》共十章主要有奇妙的数、算术中的智慧、迷人的图形与空间、表字母代替数、推理的魅力、有趣的概率、形形色色的悖论、数学游乐园、数学家逸事等内容。
趣味数学源局穗掘于生活中的点滴,细致的观察生活,数学无处不在,如商场卖东西的效应线性规划图,如学习用的笔,可以用多久,如挤牙膏,如打鸟,如水池放水,当我们把生活中的一些细节族念结合了数学,就会形成我们称谓的趣味数学。可以说数学无处不在,趣味处处都有。
趣味数学的相关故事
战国时期,齐威王与大将田忌赛马,齐威王和田忌各有三匹好马:上马,中马与下桐核马。比赛分三次进行,每赛马以千金作赌。由于两者的马力相差无几,而齐威王的马分别比田忌的相应等级的马要好,所以一般人都以为田忌必输无疑。
但是田忌采纳了门客孙膑(着名军事家)的意见,用下马对齐威王的上马,用上马对齐威王的中马,用中马对齐威王的下马,结果田忌以2比1胜齐威王而得千金。这是我国古代运用对策论思想解决问题的一个范例。
㈡ 趣味数学故事_
趣味数学故事_500字
【赶牛过河】
题目:
牧童骑在牛背上赶牛过河,共有甲、乙、丙、丁4头牛。甲牛过河需1分钟,乙牛过河需2分钟,丙牛过河需5分钟,丁牛过河需6分钟。又知,每次只能赶两头雹悔牛过河。那么牧童要把这4头牛都赶到对岸最少要用几分钟?
小朋友们在进行这类题目的计算时,孩子们需要将所有的情况都列举出来,然后,选择最优的,因此,让我们一起看看这些情况吧。
第一次,牧童赶甲、乙两头牛过河,用2分钟;然后骑甲回来,用1分钟。
第二次,牧童赶甲、丙两头牛过河,用5分钟;然后再骑甲回来,用1分钟。
第三次,牧童赶甲、丁两头牛过河,用6分钟。
总共用了:2+1+5+1+6=15(分钟)
然而,这并不是最短的时间,实际最短的时间是13分钟,为什么呢?
最优的方案:
第一次,牧童赶甲、乙两牛过河,用2分钟;然后骑甲回来,用1分钟。
第二次,牧童赶丙、丁两头牛过河,用6分钟;然后骑乙牛回来,用2分钟。
第三次,最后赶甲、乙过河,用2分钟。
这次四头牛全部过河,只需用:2+1+6+2+2=13(分钟)
原因分析:在第一种方案的时候,只考虑回来的时间要最少,却将用时最多的两牛分开过河了。让用时最多的两牛同时过河,再骑用时较少的牛返回,不是更省时吗?
鹏鹏是五年级的小朋友,丛慧在学习中,一直是班级中最棒的学生,他的各科成绩都很好,其中有一科是最值得大家学习的,那就是他的数学,他最喜欢有难度有挑战的数学题目,有时候在梦中也会做数学。
那天,他做了一个梦。
在梦中,鹏鹏还在做数学题目,在他的数学练习本上写着一个大大的“8”,鹏鹏看着这个数字8,它突然就开始说了,这个8把鹏鹏吓了一大跳,8突然间告诉鹏鹏了一个秘密,它说:“我其实是天上的神仙,一次不小心才到的民间,知道你是个爱学习的好孩子,我想考考你”。听了8的话,鹏鹏高兴极了,他讲到:“快把题目告诉我吧”。
只见8在鹏鹏的面前一挥就出现了一个题目,题目是这样的,运用你所学习过的数学符号在这些数字之间间隔,使最后的运算结果得到8.
1234=8,
12345=8,
123456=8,
1234567=8,
12345678=8.
鹏鹏还没来得及做这道题就从梦中醒来了,第二天,他来到学校,在老师和同学的帮助下,他们一起完成了这道题,下面,就是他们运算的展示。
12÷3+4=8,
12-3+4-5=8,
(1+2+3+4)÷5+6=8,
(1+2-3)×4+56÷7=8,
[1×(2+3-4)+56+7]÷8=8.
这个神仙8是不是很有意思,如果你也喜欢数学,那就拿起你的笔进行运算吧。
趣味数学联系生活讲数学,联系生活学数学,把生活经验数学化,数学问题生活化,能够真正将数学融入生活,激发同学们学习数学的兴趣。我们来看一下这篇人教版小学一年级趣味数学故事渗肆答吧!
星期天,阿星全家坐着爸爸的摩托车外出踏青,晚春的郊外一切都显得生机勃勃,青山绿水,鸟语花香,阿星躺在草地上,无暇顾及这美好的春光,为没能帮卡卡奇找到能源而苦恼,爸爸的一句话又让阿星看到了希望。爸爸查看油箱后说:回家后得加汽油了,要不明天就不能骑摩托车了。阿星兴奋的说:爸爸,回家后你给些汽油我。
爸爸一口回绝道:小孩子要汽油干什么?既不能吃更不能玩!阿星不能说出外星人卡卡奇的秘密,只能说:我只要一小杯,我们科学课要用汽油做实验。爸爸这才答应了。
一到家,爸爸拿出好几瓶汽油准备给摩托车添油,阿星急着要。爸爸却改口说道:除非你能回答上我的问题:现在我的摩托车里没汽油,如果我倒进4瓶汽油后连车共重133千克,如果我倒进7瓶汽油后连车共重139千克,你能求出一辆摩托车和一瓶汽油各重多少千克吗?
阿星想了想后说道:太简单了!用(139-133)(7-4)=2千克,再用133-24=125千克。每瓶汽油重2千克,摩托车125千克!爸爸欣慰的称赞道:阿星这段时间的数学可大有长进!阿星得意的说:那当然了,卡卡奇天天教我数学!爸爸:哪天把卡卡奇带回家,我们得好好谢谢他!阿星知道自己说漏嘴了,没敢接话,就倒了些汽油就钻进自己的书房和卡卡奇做起了试验。
数学、奥数的学习是枯燥的,怎样才能激发孩子的数学学习兴趣,爱上数学呢?不如从小学数学趣味故事开始启发孩子的数学思维。
【勇敢的数字4】
数字4和数字10是非常要好的朋友,它们之间从来没有因为什么事情而闹过脾气,但是,后来很多数字都和10讲:“你看看,你比4大那么多,你也比它厉害,为什么要和它平起平坐。”别人的这些话,在数字10看来也很有道理,于是,它对数字4总是鄙视和瞧不起。
刚开始数字4不在意,但是,有一天数字4实在忍无可忍了,就勇敢的向数字10发起挑战,数字4说:“我之前和你是好朋友,希望以后也是,我要是证明自己不弱小,那么请你以后不要再鄙视我”。听了数字4的话,数字10也觉得有道理。
用四个4和适当的数学符号,可以分别得到1、2、3、4、5、6、7、8、9、10.
4÷4+4-4=1,
4÷4+4÷4=2,
(4+4+4)÷4=3,
4+4×(4-4)=4,
(4×4+4)÷4=5,
(4+4)÷4+4=6,
4+4-4÷4=7,
4+4+4-4=8,
4÷4+4+4=9,
(44-4)÷4=10.
看到数字4的这些展示,数字10惭愧的地下了头,后来它们还是形影不离的好朋友。
代数学这个词,是从拉丁文来的,不过它最早的源头是阿拉伯文。因为发明这个词的人是阿拉伯数学家花拉子模。
花拉子模大约生活在1400年前,出生在波斯北边的城市花拉子模,所以他的名字也叫这个。据说他出生于一个商人的家庭,所以有机会跟着父亲的商队到处游历。他到过阿富汗、印度好多国家,后来定居在巴格达,所以,他对这些国家的科学都非常了解。后来,他担任了阿拉伯王朝的官员,对天文、地理、数学都很精通。
花拉子模生活在阿拉伯王国最强大的时代。那个时候,阿拉伯正在不断对外扩张,它的版图横跨欧、亚、非三个大洲。中国的史书上把它叫做大食国。大食国吸收外国的文化,把希腊、波斯和印度的书籍都翻译成阿拉伯文。所以,阿拉伯科学家就有很多可以研究的资料。花拉子模就是在这样的条件下研究代数学的。
花拉子模写了一本书,叫做《代数学》。他在这本书里讨论了方程的解法,第一次给出了二次方程的一般解法,还把方程的解叫做根。这个说法一直用到现在。
趣味数学故事《代数的由来》:后来,这本书传到欧洲。有个叫罗伯特的科学家把它翻译为还原于对消的科学,也叫做方程的科学。这就是拉丁文里面的代数学。这样,欧洲的数学家们也了解了代数的知识,后来还有许多人不断地去研究它。
在中国,代数学这个名称最早出现在1859年,那个时候还是清朝。中国数学家李善兰和一个英国数学家一起,翻译了一本英国的代数学方面的书,当时就定名为《代数学》。李善兰还指出了,所谓代数学,就是用符号来代表数字的一种方法。
花拉子模的《代数学》这部伟大的作品是全世界人民共同的财富。
游戏规则是这样的:两人各伸出一只手,一只手只有5个指头,任意出几个指头。一边出手,一边说数,如果谁说的数正好等于两个人伸出的指头数的和,谁就算赢。有人认为,这完全没有规律,赢都是靠运气,双方赢的机会相同。其实,仔细分析,其中还和学过的数学知识密切相关呢。
下面先分析甲出0时的情况,乙可能出0、1、2、3、4、5,和就是乙出的手指数;
甲出1时,乙可能出0、1、2、3、4、5中的任意一个,出不同的手指,和也不同,最后的和是乙每次出的手指数加1。
甲乙两人手指的组合形式,还有以下24种:
甲出2,乙出0、1、2、3、4、5,和是2、3、4、5、6、7;
甲出3,乙出0、1、2、3、4、5,和是3、4、5、6、7、8;
甲出4,乙出0、1、2、3、4、5,和是4、5、6、7、8、9;
甲出5,乙出0、1、2、3、4、5,和是5、6、7、8、9、10。
孩子们好好看看上面的分析,是不是对答案也有所期待呢?下面,就让我们一起看看如何才能够取胜吧。
从上面我们可以看出,在这些组合中,指头和为0、10的情况各一种;和为1、9的各两种;和为2、8的各3种;和为3、7的各4种;和为4、6的各5种,和为5的共6种。可见,和为5的组合最多,也就是说,说5赢的机会相对较多。因为不管对方出几个指头,你都可以和它凑成和为5。除此之外说别的数则不然,比如说2,对方要出2个以上指头,你怎么出也不行;再如说8,对方要出8个以下指头,你怎么也无济于事。
我怀着无比兴奋的心情读完了《趣味魔术与数学故事》。
这本书写了许多数学故事和迷惑人心的有趣魔术。我第一次看这么有意思的数学书籍,并知道了数学的空间是那么的宽大,无处不在,也知道了生活离不开数学。
这本有趣的书写了许多事例,让我讲几个来听一下吧!有一天,作者去了一家大演院看魔术,一走进去就看见一个13岁小男孩出现舞台上,他的助手飞快地潜入观众席,边比试边拿起观众的物品,提问舞台上的小男孩,结果小男孩在既远又昏暗的环境下毫不犹疑一一回答正确,观众发出暴风雨般的掌声和热烈的欢呼声。作者非常惊讶,神奇的目光久久停留在小男孩身上,想探个究竟,可小男孩迟迟犹豫着不肯说出真相,最后作者依依不舍的把自己珍藏邮集给了喜爱邮票的小男孩,才换来那“神奇”的答案。原来这一切奥秘来自简单的“数字”。魔术师是利用了数字来暗示某一个物体,达到“神奇魔幻”的效果。如:“1”代表手提包;“2”代表烟;“3”代表铜币等等。书中还说道“非凡的记忆”也是通过数字给单词编号......数字魅力竟如此之大,吸引千千万万好奇的目光。
在生活中也有许多事物可以用数字编号,如:“三八”代表妇女节、身份证号码、学生的学号......
数学是研究数字之间关系的科学,它把抽象的数字变成具体可感的物体,把无形变成有形。数字就像是数学的衣裳,数字是数学的根本,正如“20xx”是个充满希望的“数”啊!
读数学故事,学数学知识!这本书还有许多有用的知识与有趣数学故事在等着我们。
欧拉和马克都出生在城市,他俩决定跟随种葡萄的大伯到农家去看看。他俩走进大伯家的园子,看到大伯的两个儿子正在园里摘黄瓜,马克看到满满一篮子的黄瓜问道:“你俩摘了多少根黄瓜?”顽皮的小儿子没有回答却拍手唱起了童谣:“兄弟二人摘黄瓜,一共摘了七十八,哥哥多摘整八根,二人各摘多少瓜?”欧拉一听笑道:“哈哈,小朋友考我们呢。”他想了想说:“弟弟摘了三十五,哥哥摘了四十三。”
欧拉和马克随大伯来到后园,见大妈正在河边唤鸭子归笼,欧拉热心的问道:“大妈一共有多少只鸭,我们帮你赶吧。”大妈同样也乐呵呵的唱道:“太阳落山晚霞红,我把鸭子赶回笼。一半呆在水中叫,一半的一半进笼中。剩下十五围着我,我的鸭子共多少?”马克怕欧拉抢先了,连忙说:“我知道,15×2×2=60只。”
晚上,欧拉和马克与大伯一家围坐在葡萄架下,大伯抱来一个大西瓜,笑呵呵的递给欧拉一把切瓜刀说:“要说稀奇不稀奇,这儿有个切瓜题,三刀切成七块瓜,吃完剩下八块皮。”欧拉为难的说:“切成七块不难,可是怎么吃完有八块皮呢?”马克提示着在台上画了个三角形,欧拉看后一拍脑门说道:“我知道了!”欧拉切完瓜也不甘示弱,说道:“稀奇稀奇真稀奇,刀切西瓜有难题,一个西瓜大又圆,四刀切成九块齐,吃完却剩十块皮!”
欧拉和马克又愉快的度过了一天,躺在床上,他俩由衷的感叹道:“生活中处处有数学!”
有一天,阿凡提骑着自己的小毛驴来到田边。他四处欣赏着美丽的田园风光。突然,听到有人叫他,回头一看,原来是两位给地主巴依老爷干活的佃农。阿凡提忙问:“两位朋友有什么事吗?”其中一位农民说:“阿凡提,我们遇到一个难题,想来请教你。”然后这位农民就把这个难题的由来讲了一遍。原来,这两位农民被地主巴依老爷雇佣干活,眼看到发工钱的时候了,地主却打起了坏主意。他和账房先生一计算,要给这两位农民各20块银元。地主心里非常不乐意,仿佛拿走他的钱就像割他的肉一样。于是和老婆一起想出了个主意,
阿凡提听完,笑了笑说:“两位朋友不用担心,你们只要按我说的去办,保证能拿到工钱,而且还能赚取路费。”阿凡提讲完,把两位农民叫到眼前。悄悄地把解难题的办法告诉了两位农民。两位农民听了以后,非常高兴,对阿凡提千恩万谢。
第二天早晨,巴依老爷和老婆一起来到地里检查两位农民任务完成的情况。巴依老爷以为两位农民这次肯定一分钱都拿不到,所以脸上带着得意的笑容。可是走到地边却发现麦子正好割了1/7亩。两位农民说:“老爷,你的任务我们已经按时完成了,你也该给我们工钱了吧!”巴依老爷没办法,只得叫账房先生给了农民工钱。
答案解析:
我们可以看出1/6=1/2-1/3,1/12=1/3-1/4;1/20=1/4-1/5;1/30=1/5-1/6,1/42=1/6-1/7,所以原式=1/2-1/2+1/3-1/3+1/4-1/4+1/5-1/5+1/6-1/6+1/7=1/7。所以两位农民要割1/7亩地。解这类分数题目关键在于拆分,然后消元,实现简化的目的。21:30:31
一天,闲得无事,就在老家邻近的院子逛逛,恰好碰到一位老木匠(这位老木匠是本村的,我们都认识)在给一人家做木货。我们相互打了招呼。随后,老木匠用卷尺量一个木桶的底,量得周长为4尺。老木匠说:“吴老师,你是一位老师,我出个问题给你算算,刚才这只木桶的半径是多少寸?”我一时语塞,说:“老师傅,一时用口算算不出来。”
紧接着老木匠就一口报出底面半径约等于6寸4。我听到老木匠报出木桶的底面半径,一时很吃惊。
我在心里用公式C=2πr检验老木工的计算结果,感到很困难,就用纸笔检验: r=(C/2π)≈(40寸/2×3.14)≈6.37寸≈6.4寸。
结果与老木匠的结果只相差那么一点点,而老木匠的计算方法是多么的快,又是多么的准确。
这时,我兴趣更浓,请老木匠说说他的计算方法。老木匠说:“就六个字:尺变寸,加六成。”原来老木匠的计算方法是这样:四尺变四寸,四六得二寸四(即4寸×0.6=2.4寸),共4寸+2.4寸=6.4寸。
随后,我又举了一例:如果圆周长为3尺,用老木匠的算法是:三尺变三寸(尺变寸),三六一寸八,共得3+1.8=4.8(寸)。
用公式C=2πr检验:r=(C/2π)≈(30寸/2×3.14)≈4.78寸≈4.8寸。
结果相差无几。这是为什么呢?
回到家里,我对“尺变寸,加六成”的`算法进行了一番研究:
设圆周长为C,半径为r,用代数式来表示这种算法是:
r=(C/10)+0.6×(C/10)=16C/100,π=C/2×(16C/100)=3.125。
原来,老木匠把圆周率π当作3.125,尽管有误差,但算法简便,在估计半径时很实用。
这是什么话!语文老师和外语老师大为惊讶,异口同声,喊了起来。
数学老师笑着说,不明白我的意思?写下来就知道。
只见数学老师不慌不忙,在纸上把三句话写出来,再画一道横线,添一个加号,成为一道加法算式:
外语老师往数学老师肩上拍一掌,说:还是算式谜?
语文老师抢过笔来,一面研究算式,一面问道:还是每个汉字表示一个数字,不同汉字表示不同数字?
数学老师说,对,老规矩。不过今天这道式子格外精巧,每一行的九位数里都是从1到9,一个数字不漏。
答案很快求了出来,是:
123456789+864197532=987654321。
游览秀丽山川,令人心旷神怡,领略生活的自然美。
好诗、好词、好文章,来自生活,精心提炼加工以后,高于生活,可以从中体会语言美。
数字、图形和数学题,同样来自生活,通过科学的抽象概括,揭示生活中的内在规律,蕴涵一种和谐的数学美。
语文老师说,我的印象可以概括成一句话:
青山、碧水,劲松、千峰秀。
外语老师说,受你的启发,我的印象也可以概括成一句话:
秀峰、千松劲,水碧、山青。
外语老师受到的启发真不小,把语文老师那句赞美词整个儿倒过来读,就成了外语老师的赞美词。当然这也是一种绝妙的创造,因为不是任何一句话都能倒过来读的。
数学故事杯子里的互质数
从前,在匈牙利,有一个叫埃杜斯的数学家。他听人说,有个叫波沙的12岁男孩,非常聪明,特别能解数学题。埃杜斯就想,应该去考考他,看看这个小孩是不是真的像别人说的那么聪明。
埃杜斯就找到了波沙的家,见到了小波沙。波沙家的人热情款待了他。他向波沙提了一个问题:从1、2、3直到100,随便取出51个数,至少有两个是互质数的,你能说出其中的道理吗?
什么是互质数呢?比如说,2和7,它们之间没有公约数,我们就称它们为互质数。
波沙想了一会儿,就知道这个体该怎么解了。只见他把爸爸、妈妈和埃 杜斯先生面前的杯子都拿到自己的面前,说:先生,比如说这几只杯子是50个。我把1和2这两个数放进第一个杯子,把3和4这两个数放进第二个杯子,这样两个两个地往杯子里放,最后把99和100两个数放进第50个杯子,我这样放可以吧?
埃杜斯先生点点头。
小学趣味数学故事《杯子里的互质数》:小波沙又说:因为你刚才说,要从里面挑出51个数,所以至少有一只杯子里的数全被我挑走,而连续两个自然数,当然就会互质了!
埃杜斯先生问:你为什么这么说两个连续的自然数会互质呢?
波沙说:如果两个相邻的自然数,一个是a,一个是b,他们如果不互质,那么他们俩就必然有大于1的公约数c,那么c一定是b-a的约数。可是b-a又等于1,不可能有大于1的约数。既然不可能,那就说明两个相邻的自然数一定是互质的!
埃杜斯先生感叹地说:你答得真好啊!
小熊的妈妈生病了,为了能挣钱替妈妈治病,小熊每天天不亮就起床下河捕鱼,赶早市到菜场卖鱼。
一天,小熊刚摆好鱼摊,狐狸、黑狗和老狼就来了。小熊见有顾客光临,急忙招呼:“买鱼吗,我这鱼刚捕来的,新鲜着呢!”狐狸边翻弄着鱼边问:“这么新鲜的鱼,多少钱一千克?”小熊满脸堆笑:“便宜了,四元一千克。”老狼摇摇头:“我老了,牙齿不行了,我只想买点鱼身。”
小熊面露难色:“我把鱼身卖给你,鱼头、鱼尾卖给谁呢?”狐狸甩甩尾巴道:“是呀,这剩下的谁也不愿意买,不过,狼大叔牙不好,也只能吃点鱼肉。这样吧,我和黑狗牙好,咱俩一个买鱼头,一个买鱼尾,不就既帮了狼大叔,又帮了你熊老弟了吗?”小熊一听直拍手,但仍有点迟疑:"好倒好,可价钱怎么定?”
狐狸眼珠一转,答道:“鱼身2元1千克,鱼头、鱼尾各1元1千克,不正好是4元1千克吗?”小熊在地上用小棍儿画了画,然后一拍大腿:“好,就这么办!”四人一齐动手,不一会儿就把鱼头、鱼尾、鱼身分好了,小熊一过秤,鱼身35千克70元;鱼头15千克15元,鱼尾10千克10元。老狼、狐狸和黑狗提着鱼,飞快地跑到林子里,把鱼头鱼身鱼尾配好,重新平分了,……
小熊在回家的路上,边走边想:我60千克鱼按4元1千克应卖240元,可怎么现在只卖了95元……小熊怎么也理不出头绪来。
数学、奥数的学习是枯燥的,怎样才能激发孩子的数学学习兴趣,爱上数学呢?不如从小学数学趣味故事开始启发孩子的数学思维。
可爱的小豆子在周末的时候跟爸爸要了一毛六分去并冰激凌吃,张奶奶是买冰激凌的,看到很多人在排队买冰激凌,一边要拿冰激凌,一边还要算钱,所以非常地忙。
这个时候,小豆子跟张奶奶说,可以帮助张奶奶算钱,因为小豆子说他的数学很好,一定不会给张奶奶添乱的。
这个时候,张奶奶当然是高兴得不得了,然后跟小豆子说,冰激凌有三种,有一毛钱一根的,有一毛五一根的,还有两毛钱一根的,小豆子非常开心,一边收钱,一边还在心里想,肯定这是在做好事儿,妈妈和爸爸一定在表扬我呢。
不一会儿,小豆子就将所有收到的钱给了张奶奶,总共是12块4毛六,张奶奶却说,钱不对,这下可把小豆子给急坏了,急忙对张奶奶时候绝对没有出错,因为自己收钱非常认真。
张奶奶说,冰棍是一毛钱一根,一毛五一根,两毛一根,这些都是五的倍数,一定不会出现零头的,你看一看是哪里算错了,这个时候,小豆豆才想起来原来把自己要买冰棍的钱算进去了,然后把情况告诉了张奶奶,张奶奶将一毛六和冰棍一起给了小豆豆,说以后要细心,今天是奶奶请他吃冰棍,小豆子偷偷把钱递给了奶奶,然后就跑掉了。回到了家之后,暗暗告诉自己,以后做事一定要细心。
【九片竹篱笆】
有9片竹篱笆,长度分别是1米、2米、3米、4米、5米、6米、7米、8米和9米。从中取出若干片,顺次连接,围出一块正方形场地,共有多少种不同取法?
1+2+3+4+5+6+7+8+9=45(米)。
由于
4×11<45<4×12,
可见所得正方形边长最大不超过11米。
其次,因为各片篱笆的长度互不相等,所以在正方形的四条相等的边中,至少有三条边是由两片或更多片篱笆连成的。由此可见,至少要取出7片篱笆,因而其中至少有一片篱笆的长度大于或等于7米。
这样就确定了,正方形的边长可能取值范围是从7米到11米。在这范围内,可以列举出全部可能取法如下:
边长为7:(7,6+1,5+2,4+3),1种。
边长为8:(8,7+1,6+2,5+3),1种。
边长为9:(9,8+1,7+2,6+3),(9,8+1,7+2,5+4),(9,8+1,6+3,5+4),(9,7+2,6+3,5+4),(8+1,7+2,6+3,5+4),5种。
边长为10:(9+1,8+2,7+3,6+4),1种。
边长为11:(9+2,8+3,7+4,6+5),1种。
提示: 题目问“共有多少种”,不能有遗漏。为此,可以首先估计一下正方形边长的最大值和最小值,确定搜索范围。
㈢ 有关数学知识的小故事
1. 关于数学知识的小故事
大约1500年前,欧洲的数学家们是不知道用“0”的。他们使用罗马数字。罗马数字是用几个表示数的符号,按照一定规则,把它宴梁们组合起来表示不同的数目。在这种数字的运用里,不需要“0”这个数字。
而在当时,罗马帝国有一位学者从印度记数法里发现了“0”这个符号。他发现,有了“0”,进行数学运算方便极了,他非常高兴,还把印度人使用“0”的方法向大家做了介绍。过了一段时间,这件事被当时的罗马教皇知道了。当时是欧洲的中世纪,教会的势力非常大,罗马教皇的权利更是远远超过皇帝。教皇非常恼怒,他斥责说,神圣的数是上帝创造的,在上帝创造的数里没有“0”这个怪物,如今谁要把它给引进来,谁就是亵渎上帝!于是,教皇就下令,把这位学者抓了起来,并对他施加了酷刑,用夹子把他的十个手指头紧紧夹注,使他两手残废,让他再也不能握笔写字。就这样,“0”被那个愚昧、残忍的罗马教皇明令禁止了。
但是,虽然“0”被禁止使用,然而罗马的数学家们还是不管禁令,在数学的研究中仍然秘密地使用“0”,仍然用“0”做出了很多数学上的贡献。后来“0”终于在欧洲被广泛使用,而罗马数字却逐渐被淘汰了。
要不要数学的童话故事?
2. 【给几个数学小故事、知识.简短
唐僧师徒摘桃子一天,唐僧命徒弟悟空、八戒、沙僧三人去花果山摘些桃子.不长时间,徒弟三人摘完桃子高高兴兴回来.师父唐僧问:你们每人各摘回多少个桃子?八戒憨笑着说:师父,我来考考你.我们每人摘的一样多,我筐里的桃子不到100个,如果3个3个地数,数到最后还剩1个.你算算,我们每人摘了多少个?沙僧神秘地说:师父,我也来考考你.我筐里的桃子,如果4个4个地数,数到最后还剩1个.你算算,我们每人摘了多少个?悟空笑眯眯地说:师父,我也来考考你.我筐里的桃子,如果5个5个地数,数到最后还剩1个.你算算,我们每人摘多少个?2数字趣联宋代大诗人苏东坡年轻时与几个学友进京考试.他们到达试院时为时已晚.考官说:"我出一联,你们若对得上,我就让你们进考场."考官的上联是:一叶孤舟,坐了二三个学子,启用四桨五帆,经过六滩七湾,历尽八颠九簸,可叹十分来迟.苏东坡对出的下联是:十年寒窗,则祥旁进了九八家书院,抛却七情六欲,苦读五经四书,考了三番两次,今日一定要中.考官与苏东坡都将一至十这十个数字嵌入对联中,将读书人的艰辛与刻苦情况描写得淋漓尽致.3点错的小数点学习数学不孙橡仅解题思路要正确,具体解题过程也不能出错,差之毫厘,往往失之千里.美国芝加哥一个靠养老金生活的老太太,在医院施行一次小手术后回家.两星期后,她接到医院寄来的一张帐单,款数是63440美元.她看到偌大的数字,不禁大惊失色,骇得心脏病猝发,倒地身亡.后来,有人向医院一核对,原来是电脑把小数点的位置放错了,实际上只需要付63.44美元.点错一个小数点,竟要了一条人命.正如牛顿所说:"在数学中,最微小的误差也不能忽略.。
3. 求20篇数学小故事
点错的小数点 学习数学不仅解题思路要正确,具体解题过程也不能出错,差之毫厘,往往失之千里. 美国芝加哥一个靠养老金生活的老太太,在医院施行一次小手术后回家.两星期后,她接到医院寄来的一张帐单,款数是63440美元.她看到偌大的数字,不禁大惊失色,骇得心脏病猝发,倒地身亡.后来,有人向医院一核对,原来是电脑把小数点的位置放错了,实际上只需要付63.44美元. 点错一个小数点,竟要了一条人命.正如牛顿所说:"在数学中,最微小的误差也不能忽略. 二十一世纪从哪年开始? 世纪是计算年代的单位,一百年为一个世纪. 第一世纪的起始年和末尾年,分别是公元1年和公元100年.常见的错误是有人把起始年当作是公元零年,这显然不符合逻辑和我们的习惯,因为在一般情况下,序数的计算是从“1”开始的,而不是从“0”开始的。
而正是这个理解上的错误,所以才导致了世纪末尾年为公元99年的错误认识,这也是错把1999年当作是二十世纪末尾年,错把2000年当作是二十一世纪起始年的原因.因为公元计数是序数,所以应该从“1”开始,21世纪的第一年是2001年. 蒲丰试验一天,法国数学家蒲丰请许多朋友到家里,做了一次试验.蒲丰在桌子上铺好一张大白纸,白纸上画满了等距离的平行线,他又拿出很多等长的小针,小针的长度都是平行线的一半.蒲丰说:“请大家把这些小针往这张白纸上随便仍吧!”客人们按他说的做了。 蒲丰的统计结果是:大家共掷2212次,其中小针与纸上平行线相交704次,2210÷704≈3.142。
蒲丰说:“这个数是π的近似值。每次都会得到圆周率的近似值,而且投掷的次数越多,求出的圆周率近似值越精确。”
这就是着名的“蒲丰试验”。 数学魔术家 1981年的一个夏日,在印度举行了一场心算比赛。
表演者是印度的一位37岁的妇女,她的名字叫沙贡塔娜。当天,她要以惊人的心算能力,与一台先进的电子计算机展开竞赛。
工作人员写出一个201位的大数,让求这个数的23次方根。运算结果,沙贡塔娜只用了50秒钟就向观众报出了正确的答案。
而计算机为了得出同样的答数,必须输入两万条指令,再进行计算,花费的时间比沙贡塔娜要多得多。 这一奇闻,在国际上引起了轰动,沙贡塔娜被称为“数学魔术家”。
工作到最后一天的华罗庚华罗庚出生于江苏省,从小喜欢数学,而且非常聪明。1930年,19岁的华罗庚到清华大学读书。
华罗庚在清华四年中,在熊庆来教授的指导下,刻苦学习,一连发表了十几篇论文,后来又被派到英国留学,获得博士学位。他对数论有很深的研究,得出了着名的华氏定理。
他特别注意理论联系实际,走遍了20多个省、市、自治区,动员群众把优选法用于农业生产。 记者在一次采访时问他:“你最大的愿望是什么?” 他不加思索地回答:“工作到最后一天。”
他的确为科学辛劳工作的最后一天,实现了自己的诺言。高斯念小学的时候,有一次在老师教完加法后,因为老师想要休息,所以便出了一道题目要同学们算算看,题目是:1+2+3+ 。
.. +97+98+99+100 = ?老师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被 高斯叫住了!! 原来呀,高斯已经算出来了,小朋友你可知道他是如何算的吗?高斯告诉大家他是如何算出的:把 1加 至 100 与 100 加至 1 排成两排相加,也就是说: 1+2+3+4+ 。.. +96+97+98+99+100 100+99+98+97+96+ 。
.. +4+3+2+1 =101+101+101+ 。.. +101+101+101+101共有一百个101相加,但算式重复了两次,所以把10100 除以 2便得到答案等于 从此以后高斯小学的学习过程早已经超越了其它的同学,也因此奠定了他以后的数学基础,更让他成为——数学天才! 小时候刻苦学习,然而,华罗庚却被叫去看店(卖棉花的铺子)。
为了一个国际上享有盛誉的我国数有一次,有个妇女去买棉花,华罗庚正在算一个数学题,那个妇女说要包棉花多少钱?然而勤学的华罗庚却没有听见,就把算的答案答了一遍,那个妇女尖叫起来:“怎么这么贵?”,这时的华罗庚才知道有人来买棉花,就说了价格,那妇女便买了一包棉花走了。华罗庚正想坐下来继续算时,才发现:刚才算题目的草纸被妇女带走了。
这下可急坏了华罗庚,于是不顾一切地去追,一个黄包师傅看见在国际上享有盛誉的我国现代数学家华罗庚教授。 便让他坐车(因为他们认识),终于追上了,华罗庚不好意思地说:“阿姨,请……请把草纸还给我”,那妇女生气地说:“这可是我花钱买的,可不是你送的”。
华罗庚急坏了,于是他说:“要不这样吧!我花钱把它买下来”。正在华罗庚伸手掏钱之时,那妇女好像是被这孩子感动了吧!不仅没要钱还把草纸还给了华罗庚。
这时的华罗庚才微微舒了中气,回家后,又计算起来……。
4. 数学知识,最好是小故事
高斯念小学的时候,有一次在老师教完加法后,因为老师想要休息,所以便出了一道题目要同学们算算看,题目是: 1+2+3+ 。
.. +97+98+99+100 = ? 老师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被 高斯叫住了!! 原来呀,高斯已经算出来了,小朋友你可知道他是如何算的吗? 高斯告诉大家他是如何算出的:把 1加 至 100 与 100 加至 1 排成两排相加,也就是说: 1+2+3+4+ 。.. +96+97+98+99+100 100+99+98+97+96+ 。
.. +4+3+2+1 =101+101+101+ 。.. +101+101+101+101 共有一百个101相加,但算式重复了两次,所以把10100 除以 2便得到答案等于 从此以后高斯小学的学习过程早已经超越了其它的同学,也因此奠定了他以后的数学基础,更让他成为——数学天才!八戒吃了几个山桃 八戒去花果山找悟空,大圣不在家。
小猴子们热情地招待八戒,采了山中最好吃的山桃整整100个,八戒高兴地说:“大家一起吃!”可怎样吃呢,数了数共30只猴子,八戒找个树枝在地上左画右画,列起了算式,100÷30=3。..1 八戒指着上面的3,大方的说,“你们一个人吃3个山桃吧,瞧,我就吃那剩下的1个吧!”小猴子们很感激八戒,纷纷道谢,然后每人拿了各自的一份。
悟空回来后,小猴子们对悟空讲今天八戒如何大方,如何自已只吃一个山桃,悟空看了八戒的列式,大叫,“好个呆子,多吃了山桃竟然还嘴硬,我去找他!” 哈哈,你知道八戒吃了几个山桃? *** 数字的由来 小明是个喜欢提问的孩子。一天,他对0—9这几个数字产生兴趣:为什么它们被称为“ *** 数字”呢?于是,他就去问妈妈:“0—9既然叫‘ *** 数字’,那肯定是 *** 人发明的了,对吗妈妈?” 妈妈摇摇头说:“ *** 数字实际上是印度人发明的。
大约在1500年前,印度人就用一种特殊的字来表示数目,这些字有10个,只要一笔两笔就能写成。后来,这些数字传入 *** , *** 人觉得这些数字简单、实用,就在自己的国家广泛使用,并又传到了欧洲。
就这样,慢慢变成了我们今天使用的数字。因为 *** 人在传播这些数字发挥了很大的作用,人们就习惯了称这种数字为‘ *** 数字’。”
小明听了说:“原来是这样。妈妈,这可不可以叫做‘将错就错’呢?”妈妈笑了。
儿歌比赛 动物学校举办儿歌比赛,大象老师做裁判。小猴第一个举手,开始朗诵:“进位加法我会算,数位对齐才能加。
个位对齐个位加,满十要向十位进。十位相加再加一,得数算得快又准。”
小猴刚说完,小狗又开始朗诵:“退位减法并不难,数位对齐才能减。个位数小不够减,要向十位借个一。
十位退一是一十,退了以后少个一。十位数字怎么减,十位退一再去减。”
大家都为它们的精彩表演鼓掌。大象老师说:“它们的儿歌让我们明白了进位加法和退位减法,它们两个都应该得冠军,好不好?”大家同意并鼓掌祝贺它们。
﹤、﹥和﹦的本领 很久以前,数学王国比较混乱。0—9十个兄弟不仅在王国称霸,而且彼此吹嘘自己的本领最大。
数学天使看到这种情况很生气,派﹤、﹥和﹦三个小天使到数学王国建立次序,避免混乱。三个小天使来到数学王国,0—9十个兄弟轻蔑地看着它们。
9问道:“你们三个来数学王国干什么,我们不欢迎你们!” ﹦笑着说:“我们是天使派来你们王国的法官,帮你们治理好你们国家。我是‘等号’,这两位是‘大于号’和‘小于号’,它们开口朝谁,谁就大;它们尖尖朝谁,谁就小。”
0—9十个兄弟听说它们是天使派来的法官,就乖乖地服从﹤、﹥和﹦的命令。从此,数学王国有了严格的次序,任何人不会违反。
唐僧师徒摘桃子 一天,唐僧命徒弟悟空、八戒、沙僧三人去花果山摘些桃子。不久,徒弟三人摘完桃子高高兴兴回来。
师父唐僧问:你们每人各摘回多少个桃子?八戒憨笑着说:师父,我来考考你。我们每人摘的一样多,我筐里的桃子不到100个,如果3个3个地数,数到最后还剩1个。
你算算,我们每人摘了多少个?沙僧神秘地说:师父,我也来考考你。我筐里的桃子,如果4个4个地数,数到最后还剩1个。
你算算,我们每人摘了多少个?悟空笑眯眯地说:师父,我也来考考你。我筐里的桃子,如果5个5个地数,数到最后还剩1个。
你算算,我们每人摘多少个?唐僧很快说出他们每人摘桃子的个数。你知道他们每人摘多少个桃子吗。
5. 一个数学小故事
(一)失之毫厘,谬以千里 1967年8月23日,苏联的联盟一号宇宙飞船在返回大气层时,突然发生了恶性事故——减速降落伞无法打开。
苏联 *** 研究后决定:向全国实况转播这次事故。当电视台的播音员用沉重的语调宣布,宇宙飞船在两小时后将坠毁,观众将目睹宇航员弗拉迪米·科马洛夫殉难的消息后,举国上下顿时被震撼了,人们都沉浸在巨大的悲痛之中。
在电视上,观众们看到了宇航员科马洛夫镇定自若的形象。他面带微笑地对母亲说:“妈妈,您的图像我在这里看得清清楚楚,包括您头上的每根白发,您能看清我吗?” “能,能看清楚。
儿啊,妈妈一切都很好,你放心吧!” 这时,科马洛夫的女儿也出现在电视屏幕上,她只有12岁。科马洛夫说:“女儿,你不要哭。”
“我不哭……”女儿已泣不成声,但她强忍悲痛说:“爸爸,你是苏联英雄,我想告诉你,英雄的女儿会像英雄那样生活的!” 科马洛夫叮嘱女儿说:“你学习时,要认真对待每一个小数点。联盟一号今天发生的一切,就是因为地面检查时忽略了一个小数点……” 时间一分一秒地过去了,距离宇宙飞船坠毁的时间只有7分钟了。
科马洛夫向全国的电视观众挥挥手说:“同胞们,请允许我在这茫茫的太空中与你们告别。” 即使是一个小数点的错误,也会导致永远无法弥补的悲壮告别。
古罗马的恺撒大帝有句名言:“在战争中,重大事件常常就是小事所造成的后果。” 换成我们中国的警句大概就是“失之毫厘,谬以千里”吧。
(二)一个故事引发的数学家 陈景润一个家喻户晓的数学家,在攻克歌德巴赫猜想方面作出了重大贡献,创立了着名的“陈氏定理”,所以有许多人亲切地称他为“数学王子”。但有谁会想到,他的成就源于一个故事。
1937年,勤奋的陈景润考上了福州英华书院,此时正值抗日战争时期,清华大学航空工程系主任留英博士沈元教授回福建奔丧,不想因战事被滞留家乡。几所大学得知消息,都想邀请沈教授前进去讲学,他谢绝了邀请。
由于他是英华的校友,为了报达母校,他来到了这所中学为同学们讲授数学课。 一天,沈元老师在数学课上给大家讲了一故事:“200年前有个法国人发现了一个有趣的现象:6=3+3,8=5+3,10=5+5,12=5+7,28=5+23,100=11+89。
每个大于4的偶数都可以表示为两个奇数之和。因为这个结论没有得到证明,所以还是一个猜想。
大数学欧拉说过:虽然我不能证明它,但是我确信这个结论是正确的。 它像一个美丽的光环,在我们不远的前方闪耀着眩目的光辉。
……”陈景润瞪着眼睛,听得入神。 从此,陈景润对这个奇妙问题产生了浓厚的兴趣。
课余时间他最爱到图书馆,不仅读了中学辅导书,这些大学的数理化课程教材他也如饥似渴地阅读。因此获得了“书呆子”的雅号。
兴趣是第一老师。正是这样的数学故事,引发了陈景润的兴趣,引发了他的勤奋,从而引发了一位伟大的数学家。
(三)为科学而疯的人 由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结果(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度。在1874—1876年期间,不到30岁的年轻德国数学家康托尔向神秘的无穷宣战。
他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应。这样看起来,1厘米长的线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”,后来几年,康托尔对这类“无穷 *** ”问题发表了一系列文章,通过严格证明得出了许多惊人的结论。
康托尔的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂。有人说,康托尔的 *** 论是一种“疾病”,康托尔的概念是“雾中之雾”,甚至说康托尔是“疯子”。
来自数学权威们的巨大精神压力终于摧垮了康托尔,使他心力交瘁,患了精神分裂症,被送进精神病医院。 真金不怕火炼,康托尔的思想终于大放光彩。
1897年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家、数学家罗素称赞康托尔的工作“可能是这个时代所能夸耀的最巨大的工作。”可是这时康托尔仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦。
1918年1月6日,康托尔在一家精神病院去世。 康托尔(1845—1918),生于俄国彼得堡一丹麦犹太血统的富商家庭,10岁随家迁居德国,自幼对数学有浓厚兴趣。
23岁获博士学位,以后一直从事数学教学与研究。他所创立的 *** 论已被公认为全部数学的基础。
(四)数学家的“健忘” 我国数学家吴文俊教授六十寿辰那天,仍如往常,黎明即起,整天浸沉在运算和公式中。 有人特地选定这一天的晚间登门拜门拜访,寒暄之后,说明来意:“听您夫 人说,今天是您六十大寿,特来表示祝贺。”
吴文俊仿佛听了一件新闻,恍然大悟地说:“噢,是吗?我倒忘了。” 来人暗暗吃惊,心想:数学家的脑子里装满了数字,怎么连自己的生日也记不住? 其实,吴文俊对日期的记忆力是很强的。
他在将近花甲之年的时候,又先攻 了一个难题——“机器证明”。这是为了改变了数学家“一支笔、一张纸、一个脑袋”的劳动方式,运用电子计算机来实现数学证明,以便数学。
6. 关于数学的小故事
泰勒斯(古希腊数学家、天文学家)来到埃及,人们想试探一下他的能力,就问他是否能测量金字塔高度.泰勒斯说可以,但有一个条件——法老必须在场.第二天,法老如约而至,金字塔周围也聚集了不少围观的老百姓.秦勒斯来到金字塔前,阳光把他的影子投在地面上.每过一会儿,他就让人测量他影子的长度,当测量值与他身高完全吻合时,他立刻在大金字塔在地面上的投影处作一记号,然后再丈量金字塔底到投影尖顶的距离.这样,他就报出了金字塔确切的高度.在法老的请求下,他向大家讲解了如何从“影长等于身长”推到“塔影等于塔高”的原理.也就是今天所说的相似三角形定理.。
7. 给几个数学小故事、知识
唐僧师徒摘桃子
一天,唐僧命徒弟悟空、八戒、沙僧三人去花果山摘些桃子。不长时间,徒弟三人摘完桃子高高兴兴回来。师父唐僧问:你们每人各摘回多少个桃子? 八戒憨笑着说:师父,我来考考你。我们每人摘的一样多,我筐里的桃子不到100个,如果3个3个地数,数到最后还剩1个。你算算,我们每人摘了多少个?
沙僧神秘地说:师父,我也来考考你。我筐里的桃子,如果4个4个地数,数到最后还剩1个。你算算,我们每人摘了多少个?
悟空笑眯眯地说:师父,我也来考考你。我筐里的桃子,如果5个5个地数,数到最后还剩1个。你算算,我们每人摘多少个?
2
数字趣联
宋代大诗人苏东坡年轻时与几个学友进京考试.他们到达试院时为时已晚.考官说:"我出一联,你们若对得上,我就让你们进考场."考官的上联是:一叶孤舟,坐了二三个学子,启用四桨五帆,经过六滩七湾,历尽八颠九簸,可叹十分来迟.
苏东坡对出的下联是:十年寒窗,进了九八家书院,抛却七情六欲,苦读五经四书,考了三番两次,今日一定要中.
考官与苏东坡都将一至十这十个数字嵌入对联中,将读书人的艰辛与刻苦情况描写得淋漓尽致.
3
点错的小数点
学习数学不仅解题思路要正确,具体解题过程也不能出错,差之毫厘,往往失之千里.
美国芝加哥一个靠养老金生活的老太太,在医院施行一次小手术后回家.两星期后,她接到医院寄来的一张帐单,款数是63440美元.她看到偌大的数字,不禁大惊失色,骇得心脏病猝发,倒地身亡.后来,有人向医院一核对,原来是电脑把小数点的位置放错了,实际上只需要付63.44美元.
点错一个小数点,竟要了一条人命.正如牛顿所说:"在数学中,最微小的误差也不能忽略.
8. 数学名人小故事
1.古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在主:“不要弄坏我的圆”。)
后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二。2.伽罗华生于离巴黎不远的一个小城镇,父亲是学校校长,还当过多年市长。
家庭的影响使伽罗华一向勇往直前,无所畏惧。1823年,12岁的伽罗华离开双亲到巴黎求学,他不满足呆板的课堂灌输,自己去找最难的数学原着研究,一些老师也给他很大帮助。
老师们对他的评价是“只宜在数学的尖端领域里工作”。 3.阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。
父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。
在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。 4.16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁 道夫数,他死后别人便把这个数刻到他的墓碑上。
瑞士数学家雅谷·伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上 就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。这是一句既刻划螺线性质又象征他对数学热爱的双关语 5.20世纪最杰出的数学家之一的冯·诺依曼.众所周知,1946年发明的电子计算机,大大促进了科学技术的进步,大大促进了社会生活的进步.鉴于冯·诺依曼在发明电子计算机中所起到关键性作用,他被西方人誉为"计算机之父".1911年一1921年,冯·诺依曼在布达佩斯的卢瑟伦中学读书期间,就崭露头角而深受老师的器重.在费克特老师的个别指导下并合作发表了第一篇数学论文,此时冯·诺依曼还不到18岁.6.祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在7.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率, 外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率". 8.塞乐斯生于公元前624年,是古希腊第一位闻名世界的大数学家。
他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,塞乐斯便专心从事科学研究和旅行。他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。
他的家乡离埃及不太远,所以他常去埃及旅行。在那里,塞乐斯认识了古埃及人在几千年间积累的丰富数学知识。
他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。9.高斯,德国着名数学家,并有“数学王子”的美誉。
小时候高斯家里很穷,且他父亲不认为学问有何用,但高斯依旧喜欢看书,话说在小时候,冬天吃完饭后他父亲就会要他上床睡觉,以节省燃油,但当他上床睡觉时,他会将芜菁的内部挖空,里面塞入棉布卷,当成灯来使用,以继续读书,高斯有一个很出名的故事:用很短的时间计算出了小学老师布置的任务:对自然数从1到100的求和。他所使用的方法是:对50对构造成和101的数列求和(1+100,2+99,3+98……),同时得到结果:5050。
这一年,高斯9岁。10.天才由于积累,聪明在于勤奋。
—————华罗庚华罗庚的故事1930 年的一天,清华大学数学系主任熊庆来,坐在办公室里看一本《科学》杂志。看着看着,不禁拍案叫绝:“这个华罗庚是哪国留学生?” “他是在哪个大学教书的?”最后还是一位江苏籍的教员慢吞吞地说:“我弟弟有个同乡叫华罗庚,他只念过初中。
熊庆来惊奇不已,将华罗庚请到清华大学来。从此,华罗庚就成为清华大学数学系助理员。
第二年,他的论文开始在国外着名的数学杂志陆续发表 。几年之后,华罗庚被保送到英国剑桥大学留学。
他提出的理论被数学界命名为“华氏定理”。
㈣ 趣味数学小知识 数学小知识有哪些
1、早在2000多年前,我们的祖先就用磁石制作了指示方向的仪器,这种仪器就拦枣是司南。
2、最早使用小圆点作为小数点的是德国的数学家,叫克拉维斯。
4、“七巧板”是我国古代的一种拼板玩具,由七块可以拼成一个大正方形的薄板组成,拼出来的图案变化万千,后来传到国外叫做唐图。
5、传说早在四千五百年前,我们的祖先就用刻漏来计时。
6、中国是最早使用四舍五入法进行计算的国家。
7、欧几里得最着名的着作《几何原本》是欧洲数学的基础,提出五大公设,发展为欧几里得几何,被广泛的认为是历史上最成功的教科书。
8、中国南北朝时代南朝数学家、天文学家、物理学家祖冲之把圆周率数值推算到了第7位数。
9、荷兰数学家卢道夫把圆周率推算到了第35位。
10、有“力学之父”美称的简斗拆阿基米德流传于世的数学着作有10余种,阿基米德曾说过:给我销高一个支点,我可以翘起地球。这句话告诉我们:要有勇气去寻找这个支点,要用于寻找真理。
㈤ 有趣的数学科普小知识有哪些
有趣的数学科普小知识如下:
一、阿拉伯数字
阿拉伯数字是古代印度人发明的,后来传到阿拉伯,又从阿拉伯传到欧洲,欧洲人误以为是阿拉伯人发明的,就把它们叫做“阿拉伯数字”。因为流传了许多年,人们叫得顺口,所以至今人们仍然将错就错,把这些古代印度人发明的数字符号叫做阿拉伯数字。
二、九九歌
九九歌就是我们现在使用的乘法口诀。远在公元前的春秋战国时代,九九歌就已经被人们广泛使用。在当时的许多着作中,都有关于九九歌的记载。最初的九九歌是从“九九八十一”起到“二二如四”止,共36句。因为是从“九九八十一”开始,所以取名九九歌。
大约在公元五至十世纪间,九九伏昌神歌才扩充到“一一如一”。大约在公元十三、十四世纪,九九歌的顺序才变成和现在所用的一样,从“一一如一”起到“九九八十一”止。现在我国使用的乘法口诀有两种,一种是45句的,通常称为“小九九”;还有一种是81句的,通常称为“大九九”。
三、莫比乌斯环
莫比乌斯环是一种拓扑学结构,它只有一个面和一个边界。可以用一根纸条扭转成180度后,两头再粘接起来,就形成了莫比乌斯环。
莫缺亏比乌斯环沿着中线剪开,第一次,可以得到一个更大的环;第二次及以后,每次都会得到两个互相嵌套的环。中间永远不会断迅掘开,这也是莫比乌斯环的神奇之处。
四、克莱因瓶
在1882年,着名数学家菲利克斯·克莱因发现了后来以他的名字命名的着名“瓶子”:克莱因瓶。克莱因瓶就像是一个瓶子,但是它没有瓶底,它的瓶颈被拉长,然后似乎是穿过了瓶壁,最后瓶颈和瓶底圈连在了一起。有趣的是,如果把克莱因瓶沿着它的对称线切下去,竟会得到两个莫比乌斯环。
五、黄金分割
黄金分割提出者是毕达哥拉斯。
有一次,毕达哥拉斯路过铁匠作坊,被叮叮当当的打铁声迷住了。为了揭开这些声音的秘密,他测量了铁锤和铁砧的尺寸,发现它们存在着十分和谐的比例关系。回家后,他取出一根线,分为两段,反复比较,最后认定1:0.618的比例最为优美。这个比例被公认为是最能引起美感的比例,因此被称为黄金分割。
㈥ 数学的趣味小故事
小故事是一种篇幅短小,故事情节简单而又富于哲理的故事,因其每个故事都能给人以启迪,成功做人之道而受到广大读者特别是在校学生的喜爱。下面是我整理的关于数学的趣味小故事(通用20篇),一起来看看吧
华罗庚上中学时,在一次数学课上,老师给同学们出了一道着名的难题:“有一个数,3个3个地数,还余2;5个5个地数,还余3;7个7个地数,还余2,请问这个得数是多少?”大家正在思考时,华罗庚站起来说:“23”他的回答使老师惊喜不已,并得到老师的表扬。
叙拉古的亥厄洛王叫金匠造一顶纯金的皇冠,因怀疑里面掺有银,便请阿基米德鉴定。当他进入浴盆洗澡时,水漫溢到盆外,于是悟得不同质料的物体,虽然重量相同,但因体积不同,排去的水也必不相等。根据这一道理,就可以判断皇冠是否掺假。
一群猴子在井旁玩,一阵风将一只猴子的帽子吹到井里,他招呼来18个小伙伴,从井上方的松上一个接一个去捞帽子,有4只猴子没有上树,就捞着了帽子,问:是几只猴子上树下井接在一起把帽子捞上来的?
公元前46年,罗马统帅儒略·恺撒指定历法。由于他出生在7月,为了表示他的伟大,决定将7月改为“儒略月”,连同所有的单月都规定为31天,双月为30天。这样一年多出一天,2月是古罗马处死犯人的月份,为了减少处死的人数,将2月减少1天,为29天。
卖钢琴的厂家有20台钢琴。一天,来了4个小朋友他们都抢这要这20台钢琴。只有亚亚一个人突然平静了下来,说:“我们可以分一分呀!”卖钢琴的阿姨说:“对呀,我怎么没想到。”后来星星说:“那我们怎么分呢?”谁能回答星星的问题,亚亚说。一个叫红红的小朋友说:“我能回答,20除以4=5。所以我们每人能分到5台钢琴了。”亚亚、星星和阿姨,说:“太棒了。”
昨天晚上我去给弟弟买贴画儿,买了8张贴画儿,我买了一张铠甲勇士的拼图,贴画儿每张1元共8元,拼图3元,一共8+3=11元,我给老板搞了搞价钱,便宜了1元,给了老板10元钱。我和妈妈开开心心地回家了。
库默尔屈就为一个中学教师时,有一天上课,在黑板上运算却忘了七和九的乘积!他犹豫很久讲不下去时,有学生说答案是61,他依着写下了。
怎知另一声音说他应该写69。库默尔当然晓得正确答案只有一个,至于是61、69或其他数目,他不能决定了。于是他开始分析,高声说61是质数,不会是一个乘积,65是5的倍数,67也是质数69看来太大,所以答案是63吧!
蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成。组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料。蜂房的巢壁厚0.073毫米,误差极小。
丹顶鹤总是成群结队迁飞,而且排成“人”字形。“人”字形的角度是110度。更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契”?
今天,天气很晴朗。
妹妹问道:“咱们干点什么呢?”我说:“咱们可以把糖果拿出来,然后分开。
我们说干就干,拿出20块糖,妹妹说:“咱们一人一个。”我说:“不用,因为10×2=20,所以我们每人10个。”
我们把糖果分开了,装进了不同的盒子里。
今天,天很火热。
妈妈说:“你们一个人写一篇数学故事吧?”我说:“好!”妹妹也说:“好!”妈妈又说:“你们一人看一集电视,看谁写得好。”
我看的是《巴啦啦小魔仙》,妹妹也是。
每集10分钟、600秒。
妈妈说:“2集多长时间?”我说:“10+10=20分钟,1200秒。
又到了周末,妈妈带我去钓鱼(我们是去钓假鱼)。
我们来到红石公园,钓假鱼。
钓鱼摊在红石公园的东边,钓鱼池其实就是一个充气水池,里面有各种各样的塑料鱼、小鸭子、章鱼、海豚什么的`……,鱼竿也是塑料的,鱼线下面挂着一个吸铁球,鱼的嘴里砸了一个钉子,这样,就可以引鱼上钩了。
妹妹好奇地说:“这么一大池鱼,谁能钓完呀?再说,钓了放哪儿呀?”妈妈给我们每人交了两元五角,一共是五元,我和妹妹一人拿了一个钓鱼竿,就开始钓鱼了。
可是,鱼都沉在水底,可气的是,吸铁球死活也不往下沉,怎么办呢?所以,我一只手把吸铁球摁下去,另一只手拿着钓鱼竿,就这样,我们很快就钓到了一只只海豚、章鱼、热带鱼、金鱼等。
后来,又来了两个小弟弟。
其中一个弟弟钓得非常快,但是他一只海豚都没钓着。
我给他了4只,这下,我只剩8只了。
请你们猜猜吧,我原来有几只小海豚?你们肯定猜到了吧?是12只,算式是:4+8=12(只)。
我们玩了约一个小时,就回家了。
有一天,数字卡片在一起吃午饭的时候,最小的一位说起话来了。
0弟弟说:“我们大家伙儿,一起拍几张合影吧,你们觉得怎么样?” 0的兄弟姐妹们一口齐声的说:“好啊。” 8哥哥说:“0弟弟的主意可真不错,我就做一回好人吧,我老8供应照相机和胶卷,好吧?”老4说话了:“8哥,好是好,就是太麻烦了一点,到不如用我的数码照相机,就这么定了吧。”
于是,它们变忙了起来,终于+号帮它们拍好了,就立刻把数码照相机送往冲印店,冲是冲好了,电脑姐姐身手想它们要钱,可它们到底谁付钱呢?它们一个个呆呆的望着对方,这是电脑姐姐说:“一共5元钱,你们一共十一个兄弟姐妹,平均一人付多少元钱?” 在它们十一个人中,就数老六最聪明,这回它还是第一个算出了结果,你知道它是怎么算出来的吗?
小熊的妈妈生病了,为了能挣钱替妈妈治病,小熊每天天不亮就起床下河捕鱼,赶早市到菜市场卖鱼。
一天,小熊刚摆好鱼摊,狐狸、黑狗和老狼就来了。小熊见有顾客光临,急忙招呼:“买鱼吗,我这鱼刚捕来的,新鲜着呢!”狐狸边翻弄着鱼边问:“这么新鲜的鱼,多少钱一千克?”小熊满脸堆笑:“便宜了,四元一千克。”老狼摇摇头:“我老了,牙齿不行了,我只想买点鱼身。”小熊面露难色:“我把鱼身卖给你,鱼头、鱼尾卖给谁呢? ”狐狸甩甩尾巴道:“是呀,这剩下的谁也不愿意买,不过,狼大叔牙不好,也只能吃点鱼肉。这样吧,我和黑狗牙好,咱俩一个买鱼头,一个买鱼尾,不就既帮了狼大叔,又帮了你熊老弟了吗?” 小熊一听直拍手,但仍有点迟疑:"好倒好,可价钱怎么定?”狐狸眼珠一转,答道:“鱼身2元1千克,鱼头、鱼尾各1元1千克,不正好是4元1千克吗?”小熊在地上用小棍儿画了画,然后一拍大腿:“好,就这么办!”四人一齐动手,不一会儿就把鱼头、鱼尾、鱼身分好了,小熊一过秤,鱼身35千克70元;鱼头15千克15元,鱼尾10千克10元。老狼、狐狸和黑狗提着鱼,飞快地跑到林子里,把鱼头鱼身鱼尾配好,重新平分了……
小熊在回家的路上,边走边想:我60千克鱼按4元1千克应卖240元,可怎么现在只卖了95元……小熊怎么也理不出头绪来。
聪明的同学们, 你们知道这是怎么一回事吗?
从前,有一个老汉,临死前对三个儿子说:“我不行了。咱们家只有十七棵树,我死后,老大分二分之一,老二分三分之一,老三分九分之一,并且,每个树都不能砍倒。”说完这些,老汉死了。
兄弟三人看到死去的父亲,他们伤心极了,于是,三人商量着安葬了父亲,他们并且按照父亲的叮嘱,商量着分树,按老人的遗嘱分树,怎么分也分不开,兄弟三个一筹莫展,谁也没有办法。
不过,正在他们一筹莫展的时候,一个聪明的小朋友从这里路过,轻轻松松,就将这个问题解决了,让我们一起看看他的解决方法吧。
小朋友和兄弟三个人说:“要想用现有的树,将其按照你们父亲的叮嘱分是分不开的,所以,我们需要借助下外人的树”,听到这里,兄弟三人还是很迷茫,于是,小朋友就给他们继续解答问题。
解答方法:
把邻居的树借来一棵加上来分,17+1=18(棵) 老大:18的二分之一是9(棵) 老二:18的三分之一是6(棵) 老三:18的九分之一是2(棵) 9+6+2正好17棵,最后把邻居家的树还给邻居。
自己身体的计算器
我们身体真的很奇妙,手是一个常见的计算器。最常见的手的计算是9的倍数计算。家长可能不理解,但是很多小孩子很快就能学会。计算9的倍数时,将手放在膝盖上,像下表中所示,从左到右给你的手指编号。现在选择你想计算的9的倍数,假设这个乘式是7×9。只要像上图所示那样,弯曲标有数字7的手指。然后数弯曲的那根手指左边剩下的手指数是6,它右边剩下的手指根数是3,将它们放在一起,得出7×9的答案是63。
多少只袜子才能配成一对?
关于多少只袜子能配成对的问题,答案并非两只。而且这种情况并非只在我家发生。为什么会这样呢?那是因为我敢担保在冬季黑蒙蒙的早上,如果我从装着黑色和蓝色袜子的抽屉里拿出两只,它们或许始终都无法配成一对。虽然我不是太幸运,但是如果我从抽屉里拿出3只袜子,我敢说肯定会有一双颜色是一样的。不管成对的那双袜子是黑色还是蓝色,最终都会有一双颜色一样的。如此说来,只要借助一只额外的袜子,数学规则就能战胜墨菲法则。通过上述情况可以得出,“多少只袜子能配成一对”的答案是3只。
当然只有当袜子是两种颜色时,这种情况才成立。如果抽屉里有3种颜色的袜子,例如蓝色、黑色和白色袜子,你要想拿出一双颜色一样的,至少必须取出4只袜子。如果抽屉里有10种不同颜色的袜子,你就必须拿出11只。根据上述情况总结出来的数学规则是:如果你有N种类型的袜子,你必须取出N+1只,才能确保有一双完全一样的。
燃绳计时
一根绳子,从一端开始燃烧,烧完需要1小时。现在你需要在不看表的情况下,仅借助这根绳子和一盒火柴测量出半小时的时间。你可能认为这很容易,你只要在绳子中间做个标记,然后测量出这根绳子燃烧完一半所用的时间就行了。然而不幸的是,这根绳子并不均匀,有些地方比较粗,有些地方却很细,因此这根绳子不同地方的燃烧率不同。也许其中一半绳子燃烧完仅需5分钟,而另一半燃烧完却需要55分钟。面对这种情况,似乎想利用上面的绳子准确测出30分钟时间根本不可能,但是事实并非如此,因此大家可以利用一种创新方法解决上述问题,这种方法是同时从绳子两头点火。绳子燃烧完所用的时间一定是30分钟。
火车相向而行问题
两辆火车沿相同轨道相向而行,每辆火车的时速都是50英里。两车相距100英里时,一只苍蝇以每小时60英里的速度从火车A开始向火车B方向飞行。它与火车B相遇后,马上掉头向火车A飞行,如此反复,直到两辆火车相撞在一起,把这只苍蝇压得粉碎。苍蝇在被压碎前一共飞行了多远?
我们知道两车相距100英里,每辆车的时速都是50英里。这说明每辆车行驶50英里,即一小时后两车相撞。在火车出发到相撞的这一小时间,苍蝇一直以每小时60英里的速度飞行,因此在两车相撞时,苍蝇飞行了60英里。不管苍蝇是沿直线飞行,还是沿”z”型线路飞行,或者在空中翻滚着飞行,其结果都一样。
掷硬币并非最公平
抛硬币是做决定时普遍使用的一种方法。人们认为这种方法对当事人双方都很公平。因为他们认为钱币落下后正面朝上和反面朝上的概率都一样,都是50%。但是有趣的是,这种非常受欢迎的想法并不正确。
首先,虽然硬币落地时立在地上的可能性非常小,但是这种可能性是存在的。其次,即使我们排除了这种很小的可能性,测试结果也显示,如果你按常规方法抛硬币,即用大拇指轻弹,开始抛时硬币朝上的一面在落地时仍朝上的可能性大约是51%。
之所以会发生上述情况,是因为在用大拇指轻弹时,有些时候钱币不会发生翻转,它只会像一个颤抖的飞碟那样上升,然后下降。如果下次你要选出将要抛钱币的人手上的钱币在落地后哪面会朝上,你应该先看一看哪面朝上,这样你猜对的概率要高一些。但是如果那个人是握起钱币,又把拳头调了一个个儿,那么,你就应该选择与开始时相反的一面。
同一天过生日的概率
假设你在参加一个由50人组成的婚礼,有人或许会问:“我想知道这里两个人的生日一样的概率是多少?此处的一样指的是同一天生日,如5月5日,并非指出生时间完全相同。”
也许大部分人都认为这个概率非常小,他们可能会设法进行计算,猜想这个概率可能是七分之一。然而正确答案是,大约有两名生日是同一天的客人参加这个婚礼。如果这群人的生日均匀地分布在日历的任何时候,两个人拥有相同生日的概率是97%。换句话说就是,你必须参加30场这种规模的聚会,才能发现一场没有宾客出生日期相同的聚会。
人们对此感到吃惊的原因之一是,他们对两个特定的人拥有相同的出生时间和任意两个人拥有相同生日的概率问题感到困惑不解。两个特定的人拥有相同出生时间的概率是三百六十五分之一。回答这个问题的关键是该群体的大小。随着人数增加,两个人拥有相同生日的概率会更高。因此在10人一组的团队中,两个人拥有相同生日的概率大约是12%。在50人的聚会中,这个概率大约是97%。然而,只有人数升至366人(其中有一人可能在2月29日出生)时,你才能确定这个群体中一定有两个人的生日是同一天。
其实数学是非常有趣的,大家一定要开心学数学!
老师出了一道题:8÷2=?
随后问大家:8分为两半等于几?
皮皮回答:等于0!
老师说:怎么会呢?
皮皮解释:上下分开!
丁丁说道:不对,等于耳朵!
老师:哦?
丁丁回答:左右分开呗!
老师说:数字是不会骗人的。一座房子,如果一个人要花上十二天才能盖好,十二个人盖就只要一天,二百八十八人只要一小时就够了。
学生说:一万七千二百八十人只要一分钟,一百零三万六千八百人只要一秒钟。此外,如果一艘轮船横渡大西洋要六天,六艘轮船只要一天就够了。四杯25度的水加在一起就变开水了!数字是不会骗人的!
数学故事快来就好
有两个人,说了三句话:
111=337,
所以
好好好=好337。
因而在被乘数和乘数中,一定包含37的倍数和3的倍数。但是被乘数和乘数都是两位数,并且末位数字相同,所以两数中必有一个是37或74。
如果一个是74,那么另一个的末位数字是4,并且是3的倍数,因而至少是24。但是
74241000,
最新的趣味数学故事快来就好:不满足原来的算式。所以不能是74,只能是37。
总之,不考虑被乘数和乘数的顺序,唯一可能的算式是
2737=999。
三句话分别表示数27、37和999。
快来!就来!好好好!
三句话七个字,就是一道数学题:用这三句话组成乘法算式
春节里,养鸡专业户小粗心站在院子里,数了一遍鸡的总数,决定留下 ,1/2外,把1/4慰问解放军,1/3送给养老院。他把鸡送走后,听到房内有鸡叫,才知道少数了10只鸡。于是把房内房外的鸡重数一遍,没有错,不多不少,正是留下1/2的数。小粗心奇怪了。问题出在哪里呢?你知道小粗心在院里数的鸡是多少只吗?
来了多少客人一天,小林正在家里洗碗,小强看见了问道:“怎么洗那么多的碗 ?”“
家里来了客人了。”“来了多少人?”小林说:“我没有数,只知道他们每人用一个饭碗,二人合用一个汤碗,三人合用一个菜碗,四人合用一个大酒碗,一共用了15个碗。”你知道来了多少客人吗?
㈦ 短小的趣味数学故事
趣味数学故事集数学知识教育、数学兴趣教育和数学应用教育于一体,具有独特的教学价值与意义。接下来我为你整理了短小的趣味数学故事,一起来看看吧。
话说唐僧和三个徒弟为普渡众生去西天取经,要经历九九八十一难,困难重重,关卡层层,是常人很难办到的。师徒四人走了一天,觉得累了,便休息一下。八戒把钉耙一丢,倒地便睡,唐僧与沙僧打坐,悟空舞动金箍棒。
只见悟空一声“变”,金箍棒由原来的“绣花针”变成了高耸入云的“大柱子”。悟空叫道:“八戒,你猜我的金箍棒现在有多长?”八戒懒懒地说:“能有多长,不过10米罢了。”悟空说:“俺这金箍棒可神了,5秒能变10米。”“那25秒能变15米”的八戒随口说道。沙僧说:“这肯定算错了,5秒比10米小,25秒比15米大……”八戒说:“扯淡,这个理由一点也不充分。”悟空说:“那我就说说理由,让你们心服口服。”八戒说:“愿闻其详。”悟空说:“用解比例的方法,设25秒能变x米,比例是5:10=25:x,5x=250,x=50,答案应该是50米啊!”“这……这……”八戒哑口无言,“还有一种方法”,沙僧补充道:“5秒能变10米,10÷5=2米,意思是1秒能变2米长,25秒就能变25×2=50米长。”八戒如醍醐灌顶,连连称是。
唐僧在一旁听着,说道:“你们都很聪明,用不同的方法解开了这道题。凡事要深思熟虑,八戒,你以后可不能瞎掰了,要用理由说明问题。”
“一定,一定,徒儿谨记师父教诲,今后要学好数学……”哈哈哈,师徒四人伴着笑声又启程了。
这两个故事都发生在二战期间,并且都是盟军方面机智的统计学家,数学在二战期间充当了十分重要的角色,今天说的是统计。
第一个故事发生在英国,二战前期德国势头很猛,英国从敦刻尔克撤回到本岛,德国每天不定期地对英国狂轰乱炸,后来英国空军发展起来,双方空战不断。
为了能够提高飞机的防护能力,英国的飞机设计师们决定给飞机增加护甲,但是设计师们并不清楚应该在什么地方增加护甲,于是求助于统计学家。统计学家将每架中弹之后仍然安全返航的飞机的中弹部位描绘在一张图上,然后将所有中弹飞机的图都叠放在一起,这样就形成了浓密不同的弹孔分布。工作完成了,然后统计学家很肯定地说没有弹孔的地方就是应该增加护甲的地方,因为这个部位中弹的飞机都没能幸免于难。
第二个故事与德国坦克有关。我们知道德国的坦克战在二战前期占了很多便宜,直到后来,苏联的坦克才能和德国坦克一拼高下,坦克数量作为德军的主要作战力量的数据是盟军非常希望获得的情报,有很多盟军特工的任务就是窃取德军坦克总量情报。然而根据战后所获得的数据,真正可靠的情报不是来源于盟军特工,而是统计学家。
统计学家做了什么事情呢?这和德军制造坦克的惯例有关,德军坦克在出厂之后按生产的先后顺序编号,1,2,…,N,这是一个十分古板的传统,正是因为这个传统,德军送给了盟军统计学家需要的数据。盟军在战争中缴获了德军的一些坦克并且获取了这些坦克的编号,现在统计学家需要在这些编号的基础上估计N,也就是德军的坦克总量,而这通过一定的统计工具就可以实现。
看过这两个故事,同学们是不是对统计有了更大的兴趣?
巴黎郊外有一座中世纪留下的古老城堡,其年代几乎与着名的“巴黎圣母院”同样久远,因而成了旅游观光的胜地,吸引了来自世界各地的游客。下面这则故事就是出自—位导游之口。
古堡的顶层有一座尘封的钟楼,里面住着一个怪人,唯一的对外通道是个走起来嘎嘎响、陡峭异常的木质楼梯,大约有几十级,但肯定不到一百级。
某日黄昏,怪人的四位互不相识的朋友阿列克赛、巴顿、克林、杜邦,几乎在同一时间先后来访。他们发现怪人已经被人杀害了,房间里面看起来很恐怖。当下四人大惊失色,争先恐后地拼命逃走。从脏乱不堪的狭窄楼梯(一次只能通过一人)跑下来,阿列克赛一步下2级台阶,巴顿一步下3级台阶,克林一步下4级台阶,而杜邦的本事最大,竟然一步能下5级台阶。
出事以后,侠盗亚森罗宾乔装成一名体面的上流社会绅士,自告奋勇地前来侦破此案。他发现,同时印下四个人脚印的台阶仅在最高处和最低处。
为了追查兇手,脚印混乱了就不好办,于是亚森罗宾特别重视只留有一个人脚印的台阶。后来的结果充分证明他的看法是正确无误的,最后终于抓获兇手,把他绳之以法。
㈧ 数学趣味小知识大全
1. 数学趣味小知识 简短的 20到50字左右
趣味数学小知识
数论部分:
1、没有最大的质数。欧几里得给出了优美而简单的证明。
2、哥德巴赫猜想:任何一个偶数都能表示成两个质数之和。陈景润的成果为:任何一个偶数都能表示成一个质数和不多于两个质数的乘积之和。
3、费马大定理:x的n次方+y的n次方=z的n次方,n>2时没大告有整数解。欧拉证明了3和4,1995年被英国数学家 安德鲁*怀尔斯 证明。
拓扑学部分:
1、多面体点面棱的关系:定点数+面数=棱数+2,笛卡尔提出,欧拉证明,也滚悄明称欧拉定理。
2、欧拉定理推论:可能只有5种正多面体,正四面体,正八面体,正六面体,正二十面体,正十二面体。
3、把空间翻过来,左手系的物体就能变成右手系的,通过克莱因瓶模拟,一节很好的头脑体操,
摘自:/bbs2/ThreadDetailx?id=31900
2. 数学小知识
这是一个有趣的数学常识,做数学报用上它也很不错。
人们把12345679叫做“缺8数”,这“缺8数”有许多让人惊讶的特点,比如用9的倍数与它相乘,乘积竟会是由同一个数组成,人们把这叫做“清一色”。比如: 12345679*9=111111111 12345679*18=222222222 12345679*27=333333333 …… 12345679*81=999999999 这些都是9的1倍至9的9倍的。
还有99、108、117至171。最后,得出的答案是: 12345679*99=1222222221 12345679*108=1333333332 12345679*117=1444444443 … … 12345679*171=2111111109 也是“清一色数学小常识(转载) [ 2007-11-28 12:58:00 | By: gnwz ] 数学小常识1.悖论: (1)罗素悖论 一天,萨维尔村理发师挂出了一块招牌:村里所有不自己理发的男人都由我给他们理发。
于是有人问他:“您的头发谁给理呢?”理发师顿时哑口无言。 1874年,德国数学家康托尔创立了 *** 论,很快渗透到大部分数学分支,成为它们的基础。
到十九世纪末,全部数学几乎都建立在 *** 论的基础上了。就在这时, *** 论接连出现了一系列自相矛盾的结果。
特别是1902年罗素提出理发师故事反映的悖论,它极为简单、明确、通俗。于是,数学的基础被动摇了,这就是所谓的第三次“数学危机”。
此后,为了克服这些悖论,数学家们做了大量研究工作,由此产生了大批新成果,也带来了数学观念的革命。 (2)说谎者悖论: “我正在说的这句话是慌话。”
公元前四世纪的希腊数学家欧几里德提出的这个悖论,至今还在困扰运乱着数学家和逻辑学家。这就是着名的说慌者悖论。
类似的悖论最早是在公元前六世纪出现的,当时克里特岛哲学家爱皮梅尼特曾说过:“所有的克里特岛人都说慌。”在中国古代《墨经》中,也有一句十分相似的话:“以言为尽悖,悖,说在其言。”
意思是:以为所有的话都是错的,这是错的,因为这本身就是一句话。 说慌者悖论有多种变化形式,例如,在同一张纸上写出下列两句话: 下一句话是慌话。
上一句话是真话。 更有趣的是下面的对话。
甲对乙说:“你下面要讲的是‘不’,对不对?请用‘是’或‘不’来回答!” 还有一个例子。有个虔诚的教徒,他在演说中口口声声说上帝是无所不能的,什么事都做得到。
一位过路人问了一句话:“上帝能创造一块他自己也举不起来的石头吗?” 2. *** 数字 在生活中,我们经常会用到0、1、2、3、4、5、6、7、8、9这些数字。那么你知道这些数字是谁发明的吗? 这些数字符号原来是古代印度人发明的,后来传到 *** ,又从 *** 传到欧洲,欧洲人误以为是 *** 人发明的,就把它们叫做“ *** 数字”,因为流传了许多年,人们叫得顺口,所以至今人们仍然将错就错,把这些古代印度人发明的数字符号叫做 *** 数字。
现在, *** 数字已成了全世界通用的数字符号。
3. 趣味的数学小短文
趣味数学故事1、蝴蝶效应 气象学家Lorenz提出一篇论文,名叫“一只蝴蝶拍一下翅膀会不会在Taxas州引起龙卷风?”论述某系统如果初期条件差一点点,结果会很不稳定,他把这种现象戏称做“蝴蝶效应”。
就像我们投掷骰子两次,无论我们如何刻意去投掷,两次的物理现象和投出的点数也不一定是相同的。Lorenz为何要写这篇论文呢? 这故事发生在1961年的某个冬天,他如往常一般在办公室操作气象电脑。
平时,他只需要将温度、湿度、压力等气象数据输入,电脑就会依据三个内建的微分方程式,计算出下一刻可能的气象数据,因此模拟出气象变化图。 这一天,Lorenz想更进一步了解某段纪录的后续变化,他把某时刻的气象数据重新输入电脑,让电脑计算出更多的后续结果。
当时,电脑处理数据资料的数度不快,在结果出来之前,足够他喝杯咖啡并和友人闲聊一阵。在一小时后,结果出来了,不过令他目瞪口呆。
结果和原资讯两相比较,初期数据还差不多,越到后期,数据差异就越大了,就像是不同的两笔资讯。而问题并不出在电脑,问题是他输入的数据差了0.000127,而这些微的差异却造成天壤之别。
所以长期的准确预测天气是不可能的。 参考资料:阿草的葫芦(下册)——远哲科学教育基金会2、动物中的数学“天才” 蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成。
组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料。蜂房的巢壁厚0.073毫米,误差极小。
丹顶鹤总是成群结队迁飞,而且排成“人”字形。“人”字形的角度是110度。
更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契”? 蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺的圆规也很难画出像蜘蛛网那样匀称的图案。 冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。
真正的数学“天才”是珊瑚虫。珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条。
奇怪的是,古生物学家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。天文学家告诉我们,当时地球一天仅21.9小时,一年不是365天,而是400天。
(生活时报)3、麦比乌斯带 每一张纸均有两个面和封闭曲线状的棱(edge),如果有一张纸它有一条棱而且只有一个面,使得一只蚂蚁能够不越过棱就可从纸上的任何一点到达其他任何一点,这有可能吗?事实上是可能的只要把一条纸带半扭转,再把两头贴上就行了。这是德国数学家麦比乌斯(M?bius.A.F 1790-1868)在1858年发现的,自此以后那种带就以他的名字命名,称为麦比乌斯带。
有了这种玩具使得一支数学的分支拓朴学得以蓬勃发展。4、数学家的遗嘱 *** 数学家花拉子密的遗嘱,当时他的妻子正怀着他们的第一胎小孩。
“如果我亲爱的妻子帮我生个儿子,我的儿子将继承三分之二的遗产,我的妻子将得三分之一;如果是生女的,我的妻子将继承三分之二 的遗产,我的女儿将得三分之一。”。
而不幸的是,在孩子出生前,这位数学家就去世了。之后,发生的事更困扰大家,他的妻子帮他生了一对龙凤胎,而问题就发生在他的遗嘱内容。
如何遵照数学家的遗嘱,将遗产分给他的妻子、儿子、女儿呢?5、火柴游戏 一个最普通的火柴游戏就是两人一起玩,先置若干支火柴于桌上,两人轮流取,每次所取的数目可先作一些限制,规定取走最后一根火柴者获胜。 规则一:若限制每次所取的火柴数目最少一根,最多三根,则如何玩才可致胜? 例如:桌面上有n=15根火柴,甲、乙两人轮流取,甲先取,则甲应如何取才能致胜? 为了要取得最后一根,甲必须最后留下零根火柴给乙,故在最后一步之前的轮取中,甲不能留下1根或2根或3根,否则乙就可以全部取走而获胜。
如果留下4根,则乙不能全取,则不管乙取几根(1或2或3),甲必能取得所有剩下的火柴而赢了游戏。同理,若桌上留有8根火柴让乙去取,则无论乙如何取,甲都可使这一次轮取后留下4根火柴,最后也一定是甲获胜。
由上之分析可知,甲只要使得桌面上的火柴数为4、8、12、16。等让乙去取,则甲必稳操胜券。
因此若原先桌面上的火柴数为15,则甲应取3根。(∵15-3=12)若原先桌面上的火柴数为18呢?则甲应先取2根(∵18-2=16)。
规则二:限制每次所取的火柴数目为1至4根,则又如何致胜? 原则:若甲先取,则甲每次取时,须留5的倍数的火柴给乙去取。 通则:有n支火柴,每次可取1至k支,则甲每次取后所留的火柴数目必须为k+1之倍数。
规则三:限制每次所取的火柴数目不是连续的数,而是一些不连续的数,如1、3、7,则又该如何玩法? 分析:1、3、7均为奇数,由于目标为0,而0为偶数,所以先取者甲,须使桌上的火柴数为偶数,因为乙在偶数的火柴数中,不可能再取去1、3、7根火柴后获得0,但假使。
4. 谁有数学小知识
杨辉三角是一个由数字排列成的三角形数表,一般形式如下: 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 … … … … … 杨辉三角最本质的特征是,它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两个数之和。
其实,中国古代数学家在数学的许多重要领域中处于遥遥领先的地位。中国古代数学史曾经有自己光辉灿烂的篇章,而杨辉三角的发现就是十分精彩的一页。
杨辉,字谦光,北宋时期杭州人。在他1261年所着的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为“开方作法本源”图。
而这样一个三角在我们的奥数竞赛中也是经常用到,最简单的就是叫你找规律。现在要求我们用编程的方法输出这样的数表。
同时 这也是多项式(a+b)^n 打开括号后的各个项的二次项系数的规律 即为 0 (a+b)^0 (0 nCr 0) 1 (a+b)^1 (1 nCr 0) (1 nCr 1) 2 (a+b)^2 (2 nCr 0) (2 nCr 1) (2 nCr 2) 3 (a+b)^3 (3 nCr 0) (3 nCr 1) (3 nCr 2) (3 nCr 3) . 。 。
。 。
。 因此 杨辉三角第x层第y项直接就是 (y nCr x) 我们也不难得到 第x层的所有项的总和 为 2^x (即(a+b)^x中a,b都为1的时候) [ 上述y^x 指 y的 x次方;(a nCr b) 指 组合数] 其实,中国古代数学家在数学的许多重要领域中处于遥遥领先的地位。
中国古代数学史曾经有自己光辉灿烂的篇章,而杨辉三角的发现就是十分精彩的一页。 杨辉,字谦光,北宋时期杭州人。
在他1261年所着的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为“开方作法本源”图。 而这样一个三角在我们的奥数竞赛中也是经常用到,最简单的就是叫你找规律。
具体的用法我们会在教学内容中讲授。 在国外,这也叫做"帕斯卡三角形". 还有小故事: (一)失之毫厘,谬以千里 1967年8月23日,苏联的联盟一号宇宙飞船在返回大气层时,突然发生了恶性事故——减速降落伞无法打开。
苏联 *** 研究后决定:向全国实况转播这次事故。当电视台的播音员用沉重的语调宣布,宇宙飞船在两小时后将坠毁,观众将目睹宇航员弗拉迪米·科马洛夫殉难的消息后,举国上下顿时被震撼了,人们都沉浸在巨大的悲痛之中。
在电视上,观众们看到了宇航员科马洛夫镇定自若的形象。他面带微笑地对母亲说:“妈妈,您的图像我在这里看得清清楚楚,包括您头上的每根白发,您能看清我吗?” “能,能看清楚。
儿啊,妈妈一切都很好,你放心吧!” 这时,科马洛夫的女儿也出现在电视屏幕上,她只有12岁。科马洛夫说:“女儿,你不要哭。”
“我不哭……”女儿已泣不成声,但她强忍悲痛说:“爸爸,你是苏联英雄,我想告诉你,英雄的女儿会像英雄那样生活的!” 科马洛夫叮嘱女儿说:“你学习时,要认真对待每一个小数点。联盟一号今天发生的一切,就是因为地面检查时忽略了一个小数点……” 时间一分一秒地过去了,距离宇宙飞船坠毁的时间只有7分钟了。
科马洛夫向全国的电视观众挥挥手说:“同胞们,请允许我在这茫茫的太空中与你们告别。” 即使是一个小数点的错误,也会导致永远无法弥补的悲壮告别。
古罗马的恺撒大帝有句名言:“在战争中,重大事件常常就是小事所造成的后果。” 换成我们中国的警句大概就是“失之毫厘,谬以千里”吧。
(二)一个故事引发的数学家 陈景润一个家喻户晓的数学家,在攻克歌德巴赫猜想方面作出了重大贡献,创立了着名的“陈氏定理”,所以有许多人亲切地称他为“数学王子”。但有谁会想到,他的成就源于一个故事。
1937年,勤奋的陈景润考上了福州英华书院,此时正值抗日战争时期,清华大学航空工程系主任留英博士沈元教授回福建奔丧,不想因战事被滞留家乡。几所大学得知消息,都想邀请沈教授前进去讲学,他谢绝了邀请。
由于他是英华的校友,为了报达母校,他来到了这所中学为同学们讲授数学课。 一天,沈元老师在数学课上给大家讲了一故事:“200年前有个法国人发现了一个有趣的现象:6=3+3,8=5+3,10=5+5,12=5+7,28=5+23,100=11+89。
每个大于4的偶数都可以表示为两个奇数之和。因为这个结论没有得到证明,所以还是一个猜想。
大数学欧拉说过:虽然我不能证明它,但是我确信这个结论是正确的。 它像一个美丽的光环,在我们不远的前方闪耀着眩目的光辉。
……”陈景润瞪着眼睛,听得入神。 从此,陈景润对这个奇妙问题产生了浓厚的兴趣。
课余时间他最爱到图书馆,不仅读了中学辅导书,这些大学的数理化课程教材他也如饥似渴地阅读。因此获得了“书呆子”的雅号。
兴趣是第一老师。正是这样的数学故事,引发了陈景润的兴趣,引发了他的勤奋,从而引发了一位伟大的数学家。
(三)为科学而疯的人 由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结果(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度。在1874—1876年期间,不到30岁的年轻德国数学家康托尔向神秘的无穷宣战。
他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应。这样看起来,1厘米长的线段内的点与太平洋面上。
5. 生活中的趣味数学知识
1.一个服装的工人每人每天可以生产4件上衣或7条裤子,一件上衣和一条裤子为一套服装。
现有66名工人生产,每天最多能生产多少套服装?2、小王有三本集邮册,全部邮票的五分之一在第一本上,N除以8(N为非零自然数)在第二本上,剩余的39张在第三本上。小王有多少张邮票?3.小明看着自己的成绩表预测:如果下次数学考试100分,那么总平均分是91分,如果下次考80分,那么数学总平均成绩是86分,小明数学统计表是已经有几次考试?1设x名工人生产上衣,得 4x=7*(66-x)则x=42所以一天可以生产 4*42=168 套服装2设其有x张邮票.得x/5+N/8+39=x化简得 4x/5-N/8=39由题意知,N为8的陪数,又4x/5为偶数,39为奇数.则N为8的奇数陪数.设N=(2t+1)*8 得4x/5-(2t+1)=39x=(100+5t)/2则5t为偶数,再设t=2w,得x=(100+5*2w)/2=50+5w由此可知,共有50+5w 张邮票, w为0,1,2,3,4,。
此时N=32w+83设有x次考试的成绩,现在的平均分为a.则有 (xa+100)/(x+1)=91(xa+80)/(x+1)=86两式相减得20/(x+1)=5则x=3 a=88即 现有3次考试的成绩。
6. 搜集整理有关数学的趣味小故事
1.符号“+”“-”是五百年前一位德国人最先使用的。
当时他们并不表示“加上”“减去”。知道三百多年前才正式用来表示“加上”“减去”。
2.“七巧板”是我国古代的一种拼板玩具,有七个块可以拼成一个大正方形的薄板组成,拼出来的图案变化万千。后来传到国外叫做“唐图”。
“七巧板”流传到今天,成为人们喜爱的一种智力玩具。 3.传说早在四五千年前,我们的祖先就用一种滴水的器具来计时,名叫刻漏。
4.乘号“*”是三百多年前一位英国数学家最先使用的。因为乘法是一种特殊的加法,所以他把加号斜过来表示。
5.公元前46年,罗马统帅儒略· 恺撒指定历法。由于他出生在7月,为了表示他的伟大,决定将7月改为“儒略月”,连同所有的单月都规定为31天,双月为30天。
这样一年多出一天,2月是古罗马处死犯人的月份,为了减少处死的人数,将2月减少1天,为29天。6.小方是一个木匠,但他很傲慢,有一天,师傅问他:“桌子有4个角,我砍去一个,还剩几个?”小芳说4-1=3,三个。
师傅告诉他,有5个 7.大约1500年前,欧洲的数学家们是不知道用“0”的。他们使用罗马数字。
罗马数字是用几个表示数的符号,按照一定规则,把它们组合起来表示不同的数目。在这种数字的运用里,不需要“0”这个数字。
而在当时,罗马帝国有一位学者从印度记数法里发现了“0”这个符号。他发现,有了“0”,进行数学运算方便极了,他非常高兴,还把印度人使用“0”的方法向大家做了介绍。
过了一段时间,这件事被当时的罗马教皇知道了。当时是欧洲的中世纪,教会的势力非常大,罗马教皇的权利更是远远超过皇帝。
教皇非常恼怒,他斥责说,神圣的数是上帝创造的,在上帝创造的数里没有“0”这个怪物,如今谁要把它给引进来,谁就是亵渎上帝!于是,教皇就下令,把这位学者抓了起来,并对他施加了酷刑,用夹子把他的十个手指头紧紧夹注,使他两手残废,让他再也不能握笔写字。就这样,“0”被那个愚昧、残忍的罗马教皇明令禁止了。
但是,虽然“0”被禁止使用,然而罗马的数学家们还是不管禁令,在数学的研究中仍然秘密地使用“0”,仍然用“0”做出了很多数学上的贡献。后来“0”终于在欧洲被广泛使用,而罗马数字却逐渐被淘汰了。
8.小朋友你们可知道数学天才高斯小时候的故事呢? 高斯念小学的时候,有一次在老师教完加法后,因为老师想要休息,所以便出了一道题目要同学们算算看,题目是: 1+2+3+ 。.. +97+98+99+100 = ? 老师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被 高斯叫住了!! 原来呀,高斯已经算出来了,小朋友你可知道他是如何算的吗? 高斯告诉大家他是如何算出的:把 1加 至 100 与 100 加至 1 排成两排相加,也就是说: 1+2+3+4+ 。
.. +96+97+98+99+100 100+99+98+97+96+ 。.. +4+3+2+1 =101+101+101+ 。
.. +101+101+101+101 共有一百个101相加,但算式重复了两次,所以把10100 除以 2便得到答案等于 <5050> 从此以后高斯小学的学习过程早已经超越了其它的同学,也因此奠定了他以后的数学基础,更让他成为——数学天才! 在日常生活中,数学无处不在,比如说:买菜、卖菜、算多少钱…… 9.下面就是一个小故事,是一个数字之间的故事。 有一天,数字卡片在一起吃午饭的时候,最小的一位说起话来了。
0弟弟说:“我们大家伙儿,一起拍几张合影吧,你们觉得怎么样?” 0的兄弟姐妹们一口齐声的说:“好啊。” 8哥哥说:“0弟弟的主意可真不错,我就做一回好人吧,我老8供应照相机和胶卷,好吧?” 老4说话了:“8哥,好是好,就是太麻烦了一点,到不如用我的数码照相机,就这么定了吧。”
于是,它们变忙了起来,终于+号帮它们拍好了,就立刻把数码照相机送往冲印店,冲是冲好了,电脑姐姐身手想它们要钱,可它们到底谁付钱呢?它们一个个呆呆的望着对方,这是电脑姐姐说:“一共5元钱,你们一共十一个兄弟姐妹,平均一人付多少元钱?” 在它们十一个人中,就数老六最聪明,这回它还是第一个算出了结果,你知道它是怎么算出来的吗? 10.唐僧师徒摘桃子 一天,唐僧命徒弟悟空、八戒、沙僧三人去花果山摘些桃子。不长时间,徒弟三人摘完桃子高高兴兴回来。
师父唐僧问:你们每人各摘回多少个桃子? 八戒憨笑着说:师父,我来考考你。我们每人摘的一样多,我筐里的桃子不到100个,如果3个3个地数,数到最后还剩1个。
你算算,我们每人摘了多少个? 沙僧神秘地说:师父,我也来考考你。我筐里的桃子,如果4个4个地数,数到最后还剩1个。
你算算,我们每人摘了多少个? 悟空笑眯眯地说:师父,我也来考考你。我筐里的桃子,如果5个5个地数,数到最后还剩1个。
你算算,我们每人摘多少个? 唐僧很快说出他们每人摘桃子的个数。你知道他们摘了多少桃子吗?。
7. 收集20个数学小常识
1。
对顶角相等. 2。圆周率是一个无理数。
3。三角形内角和为180度 4。
多边形内角和为(边数-2)*180度 5。多边形外角和恒等于360度 6。
一次函数的图象是一根直线。 7。
正比例函数的图象是一根过原点的直线。 8。
反比例函数的图象是双曲线。 9。
两次函数的图象是抛物线。 10。
同底数幂相乘,底数不变,指数相加。 11。
两条平行线被第三条直线所截,同位角相等。 12。
两条平行线被第三条直线所截,内错角相等。 13。
两条平行线被第三条直线所截,同旁内角互补。 14。
一个三角形的三条中线交于一点,这个点叫做重心。 15。
一个三角形的三个角的角平分线交于一点,这个点叫做内心。 16。
一个三角形三边上的三条高交于一点,这个点叫做垂心。 17。
一个三角形三边的中垂线交于一点,这个点叫做外心。 18。
同底等高的两个三角形面积相等。 19。
1+2+3+……+n=(1+n)*n/2 20。 Sin90=1,Cos90=0,Sin0=0,Cos0=1。
㈨ 关于数学知识的小故事
1. 关于数学知识的小故事
大约1500年前,欧洲的数学家们是不知道用“0”的。他们使用罗马数字。罗马数字是用几个表示数的符号,按照一定规则,把它们组合起来表示不同的数目。在高则芹这种数字的运用里,不需要“0”这个数字。
而在当时,罗马帝国有一位学者从印度记数法里发现了“0”这个符号。他发现,有了“0”,进行数学运算方便极了,他非常高兴,还把印度人使用“0”的方法向大家做了介绍。过了一段时间,这件事被当时的罗马教皇知道了。当时是欧洲的中世纪,教会的势力非常大,罗马教皇的权利更是远远超过皇帝。教皇非常恼怒,他斥责说,神圣的数是上帝创造的,在上帝创造的数里没有“0”这个怪物,如今谁要把它给引进来,谁就是亵渎上帝!于是,教皇就下令,把这位学者抓了起来,并对他施加了酷刑,用夹子把他的十个手指头紧紧夹注,使他两手残废,让他再也不能握笔写字。就这样,“0”被那个愚昧、残忍的罗马教皇明令禁止了。
但是,虽然“0”被禁止使用,然而罗马的数学家们还是不管禁令,在数学的研究中仍然秘密地使用“0”,仍然用“0”做出盯逗了很多数学上的贡献。后来“0”终于在欧洲被广泛使用,而罗马数字却逐渐被淘汰了。
要不要数学的童话故事?
2. 有关数学的小故事
1、蝴蝶效应 气象学家Lorenz提出一篇论文,名叫“一只蝴蝶拍一下翅膀会不会在Taxas州引起龙卷风?”论述某系统如果初期条件差一点点,结果会很不稳定,他把这种现象戏称做“戚毕蝴蝶效应”。
就像我们投掷骰子两次,无论我们如何刻意去投掷,两次的物理现象和投出的点数也不一定是相同的。Lorenz为何要写这篇论文呢?这故事发生在1961年的某个冬天,他如往常一般在办公室操作气象电脑。
平时,他只需要将温度、湿度、压力等气象数据输入,电脑就会依据三个内建的微分方程式,计算出下一刻可能的气象数据,因此模拟出气象变化图。这一天,Lorenz想更进一步了解某段纪录的后续变化,他把某时刻的气象数据重新输入电脑,让电脑计算出更多的后续结果。
当时,电脑处理数据资料的数度不快,在结果出来之前,足够他喝杯咖啡并和友人闲聊一阵。在一小时后,结果出来了,不过令他目瞪口呆。
结果和原资讯两相比较,初期数据还差不多,越到后期,数据差异就越大了,就像是不同的两笔资讯。而问题并不出在电脑,问题是他输入的数据差了0.000127,而这些微的差异却造成天壤之别。
所以长期的准确预测天气是不可能的。参考资料:阿草的葫芦(下册)——远哲科学教育基金会2、动物中的数学“天才” 蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成。
组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料。蜂房的巢壁厚0.073毫米,误差极小。
丹顶鹤总是成群结队迁飞,而且排成“人”字形。“人”字形的角度是110度。
更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契”? 蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺的圆规也很难画出像蜘蛛网那样匀称的图案。冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。
真正的数学“天才”是珊瑚虫。珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条。
奇怪的是,古生物学家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。天文学家告诉我们,当时地球一天仅21.9小时,一年不是365天,而是400天。
(生活时报)3、麦比乌斯带 每一张纸均有两个面和封闭曲线状的棱(edge),如果有一张纸它有一条棱而且只有一个面,使得一只蚂蚁能够不越过棱就可从纸上的任何一点到达其他任何一点,这有可能吗?事实上是可能的只要把一条纸带半扭转,再把两头贴上就行了。这是德国数学家麦比乌斯(M?bius.A.F 1790-1868)在1858年发现的,自此以后那种带就以他的名字命名,称为麦比乌斯带。
有了这种玩具使得一支数学的分支拓朴学得以蓬勃发展。4、数学家的遗嘱 *** 数学家花拉子密的遗嘱,当时他的妻子正怀着他们的第一胎小孩。
“如果我亲爱的妻子帮我生个儿子,我的儿子将继承三分之二的遗产,我的妻子将得三分之一;如果是生女的,我的妻子将继承三分之二 的遗产,我的女儿将得三分之一。”。
而不幸的是,在孩子出生前,这位数学家就去世了。之后,发生的事更困扰大家,他的妻子帮他生了一对龙凤胎,而问题就发生在他的遗嘱内容。
如何遵照数学家的遗嘱,将遗产分给他的妻子、儿子、女儿呢?5、火柴游戏 一个最普通的火柴游戏就是两人一起玩,先置若干支火柴于桌上,两人轮流取,每次所取的数目可先作一些限制,规定取走最后一根火柴者获胜。 规则一:若限制每次所取的火柴数目最少一根,最多三根,则如何玩才可致胜? 例如:桌面上有n=15根火柴,甲、乙两人轮流取,甲先取,则甲应如何取才能致胜? 为了要取得最后一根,甲必须最后留下零根火柴给乙,故在最后一步之前的轮取中,甲不能留下1根或2根或3根,否则乙就可以全部取走而获胜。
如果留下4根,则乙不能全取,则不管乙取几根(1或2或3),甲必能取得所有剩下的火柴而赢了游戏。同理,若桌上留有8根火柴让乙去取,则无论乙如何取,甲都可使这一次轮取后留下4根火柴,最后也一定是甲获胜。
由上之分析可知,甲只要使得桌面上的火柴数为4、8、12、16。等让乙去取,则甲必稳操胜券。
因此若原先桌面上的火柴数为15,则甲应取3根。(∵15-3=12)若原先桌面上的火柴数为18呢?则甲应先取2根(∵18-2=16)。
规则二:限制每次所取的火柴数目为1至4根,则又如何致胜? 原则:若甲先取,则甲每次取时,须留5的倍数的火柴给乙去取。 通则:有n支火柴,每次可取1至k支,则甲每次取后所留的火柴数目必须为k+1之倍数。
规则三:限制每次所取的火柴数目不是连续的数,而是一些不连续的数,如1、3、7,则又该如何玩法? 分析:1、3、7均为奇数,由于目标为0,而0为偶数,所以先取者甲,须使桌上的火柴数为偶数,因为乙在偶数的火柴数中,不可能再取去1、3、7根火柴后获得0,但假使如此也不能保证甲必赢,因为。
3. 【给几个数学小故事、知识.简短
唐僧师徒摘桃子一天,唐僧命徒弟悟空、八戒、沙僧三人去花果山摘些桃子.不长时间,徒弟三人摘完桃子高高兴兴回来.师父唐僧问:你们每人各摘回多少个桃子?八戒憨笑着说:师父,我来考考你.我们每人摘的一样多,我筐里的桃子不到100个,如果3个3个地数,数到最后还剩1个.你算算,我们每人摘了多少个?沙僧神秘地说:师父,我也来考考你.我筐里的桃子,如果4个4个地数,数到最后还剩1个.你算算,我们每人摘了多少个?悟空笑眯眯地说:师父,我也来考考你.我筐里的桃子,如果5个5个地数,数到最后还剩1个.你算算,我们每人摘多少个?2数字趣联宋代大诗人苏东坡年轻时与几个学友进京考试.他们到达试院时为时已晚.考官说:"我出一联,你们若对得上,我就让你们进考场."考官的上联是:一叶孤舟,坐了二三个学子,启用四桨五帆,经过六滩七湾,历尽八颠九簸,可叹十分来迟.苏东坡对出的下联是:十年寒窗,进了九八家书院,抛却七情六欲,苦读五经四书,考了三番两次,今日一定要中.考官与苏东坡都将一至十这十个数字嵌入对联中,将读书人的艰辛与刻苦情况描写得淋漓尽致.3点错的小数点学习数学不仅解题思路要正确,具体解题过程也不能出错,差之毫厘,往往失之千里.美国芝加哥一个靠养老金生活的老太太,在医院施行一次小手术后回家.两星期后,她接到医院寄来的一张帐单,款数是63440美元.她看到偌大的数字,不禁大惊失色,骇得心脏病猝发,倒地身亡.后来,有人向医院一核对,原来是电脑把小数点的位置放错了,实际上只需要付63.44美元.点错一个小数点,竟要了一条人命.正如牛顿所说:"在数学中,最微小的误差也不能忽略.。
4. 关于数学的小故事
战国时期,齐威王与大将田忌赛马,齐威王和田忌各有三匹好马:上马,中马与下马。
比赛分三次进行,每赛马以千金作赌。由于两者的马力相差无几,而齐威王的马分别比田忌的相应等级的马要好,所以一般人都以为田忌必输无疑。
但是田忌采纳了门客孙膑(着名军事家)的意见,用下马对齐威王的上马,用上马对齐威王的中马,用中马对齐威王的下马,结果田忌以2比1胜齐威王而得千金。这是我国古代运用对策论思想解决问题的一个范例。
趣味数学故事(2): 当高斯还在上小学二年级的时候,有一天他的数学老师因为想借上课的时光处理一些自我的私事,因此打算出一道难题给学生练习。他的题目是: 1+2+3+4+5+6+7+8+9+10=? 因为加法刚教不久,所以老师觉得出了这题,学生肯定是要算蛮久的。
自我也就能够借此机会来处理未完的事情。但是才一转眼的时光,高斯已停下了笔,闲闲地坐在那里。
老师看了,很生气地训斥高斯。 但是高斯却说他已经将答案算出来了,就是55。
老师听了吓了一跳,就问高斯如何算出来的。高斯答道:“我只是发现1和10的和是11、2和9的和也是11、3和8的和也是11、4和7的和也是11、5和6的和还是11,又因为11+11+11+11+11=55,所以我就是这么算出来了。”
老师同学听了以后,都对高斯竖起了大拇指。之后的高斯长大后,成为了一位很伟大的数学家。
5. 求关于数学的小故事
高斯从1加到100的故事 7岁时高斯进了 St. Catherine小学。
大约在十岁时,老师在算数课上出了一道难题:“把 1到100的整数写下来,然后把它们加起来!”这个难题当然难不倒学过算数级数的人,但这些孩子才刚开始学算数呢!老师心想他可以休息一下了。但他错了,因为还不到几秒钟,高斯已经把石板放在讲桌上了,同时说道:“答案在这儿!”考完后,老师一张张地检查着石板。
大部分都做错了,学生就吃了一顿鞭打。高斯的石板被翻了过来,只见上面只有一个数字:5050。
老师吃了一惊,高斯就解释他如何找到答案:1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,一共有50对和为 101的数目,所以答案是 50*101=5050。由此可见高斯找到了算术级数的对称性,然后就像求得一般算术级数合的过程一样,把数目一对对地凑在一起。
6. 一个数学小故事
(一)失之毫厘,谬以千里 1967年8月23日,苏联的联盟一号宇宙飞船在返回大气层时,突然发生了恶性事故——减速降落伞无法打开。
苏联 *** 研究后决定:向全国实况转播这次事故。当电视台的播音员用沉重的语调宣布,宇宙飞船在两小时后将坠毁,观众将目睹宇航员弗拉迪米·科马洛夫殉难的消息后,举国上下顿时被震撼了,人们都沉浸在巨大的悲痛之中。
在电视上,观众们看到了宇航员科马洛夫镇定自若的形象。他面带微笑地对母亲说:“妈妈,您的图像我在这里看得清清楚楚,包括您头上的每根白发,您能看清我吗?” “能,能看清楚。
儿啊,妈妈一切都很好,你放心吧!” 这时,科马洛夫的女儿也出现在电视屏幕上,她只有12岁。科马洛夫说:“女儿,你不要哭。”
“我不哭……”女儿已泣不成声,但她强忍悲痛说:“爸爸,你是苏联英雄,我想告诉你,英雄的女儿会像英雄那样生活的!” 科马洛夫叮嘱女儿说:“你学习时,要认真对待每一个小数点。联盟一号今天发生的一切,就是因为地面检查时忽略了一个小数点……” 时间一分一秒地过去了,距离宇宙飞船坠毁的时间只有7分钟了。
科马洛夫向全国的电视观众挥挥手说:“同胞们,请允许我在这茫茫的太空中与你们告别。” 即使是一个小数点的错误,也会导致永远无法弥补的悲壮告别。
古罗马的恺撒大帝有句名言:“在战争中,重大事件常常就是小事所造成的后果。” 换成我们中国的警句大概就是“失之毫厘,谬以千里”吧。
(二)一个故事引发的数学家 陈景润一个家喻户晓的数学家,在攻克歌德巴赫猜想方面作出了重大贡献,创立了着名的“陈氏定理”,所以有许多人亲切地称他为“数学王子”。但有谁会想到,他的成就源于一个故事。
1937年,勤奋的陈景润考上了福州英华书院,此时正值抗日战争时期,清华大学航空工程系主任留英博士沈元教授回福建奔丧,不想因战事被滞留家乡。几所大学得知消息,都想邀请沈教授前进去讲学,他谢绝了邀请。
由于他是英华的校友,为了报达母校,他来到了这所中学为同学们讲授数学课。 一天,沈元老师在数学课上给大家讲了一故事:“200年前有个法国人发现了一个有趣的现象:6=3+3,8=5+3,10=5+5,12=5+7,28=5+23,100=11+89。
每个大于4的偶数都可以表示为两个奇数之和。因为这个结论没有得到证明,所以还是一个猜想。
大数学欧拉说过:虽然我不能证明它,但是我确信这个结论是正确的。 它像一个美丽的光环,在我们不远的前方闪耀着眩目的光辉。
……”陈景润瞪着眼睛,听得入神。 从此,陈景润对这个奇妙问题产生了浓厚的兴趣。
课余时间他最爱到图书馆,不仅读了中学辅导书,这些大学的数理化课程教材他也如饥似渴地阅读。因此获得了“书呆子”的雅号。
兴趣是第一老师。正是这样的数学故事,引发了陈景润的兴趣,引发了他的勤奋,从而引发了一位伟大的数学家。
(三)为科学而疯的人 由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结果(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度。在1874—1876年期间,不到30岁的年轻德国数学家康托尔向神秘的无穷宣战。
他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应。这样看起来,1厘米长的线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”,后来几年,康托尔对这类“无穷 *** ”问题发表了一系列文章,通过严格证明得出了许多惊人的结论。
康托尔的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂。有人说,康托尔的 *** 论是一种“疾病”,康托尔的概念是“雾中之雾”,甚至说康托尔是“疯子”。
来自数学权威们的巨大精神压力终于摧垮了康托尔,使他心力交瘁,患了精神分裂症,被送进精神病医院。 真金不怕火炼,康托尔的思想终于大放光彩。
1897年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家、数学家罗素称赞康托尔的工作“可能是这个时代所能夸耀的最巨大的工作。”可是这时康托尔仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦。
1918年1月6日,康托尔在一家精神病院去世。 康托尔(1845—1918),生于俄国彼得堡一丹麦犹太血统的富商家庭,10岁随家迁居德国,自幼对数学有浓厚兴趣。
23岁获博士学位,以后一直从事数学教学与研究。他所创立的 *** 论已被公认为全部数学的基础。
(四)数学家的“健忘” 我国数学家吴文俊教授六十寿辰那天,仍如往常,黎明即起,整天浸沉在运算和公式中。 有人特地选定这一天的晚间登门拜门拜访,寒暄之后,说明来意:“听您夫 人说,今天是您六十大寿,特来表示祝贺。”
吴文俊仿佛听了一件新闻,恍然大悟地说:“噢,是吗?我倒忘了。” 来人暗暗吃惊,心想:数学家的脑子里装满了数字,怎么连自己的生日也记不住? 其实,吴文俊对日期的记忆力是很强的。
他在将近花甲之年的时候,又先攻 了一个难题——“机器证明”。这是为了改变了数学家“一支笔、一张纸、一个脑袋”的劳动方式,运用电子计算机来实现数学证明,以便数学。
7. 简短数学小故事
1、0和它的数字兄弟 有一天,森林里面来了一群特殊的“客人”。
它们长相很特别,动物们都很奇怪,要求他们一一介绍自己。第一个走出来 一个瘦子,它说:“我是1,像支铅笔细又长”。
接着又走出一个说:“我是2,像只小鸭水上飘。”第三个说“我是3,像 只耳 朵听声音。”
“我是4,像面小旗随风飘。”“我是5,像支衣钩挂衣帽。”
“我是6,像棵豆芽咧嘴笑。”“我是7,像把镰刀割 青草。”
“我是8,像支麻花拧一道。”“我是9,像把勺子能盛饭。”
“我是0,像个鸡蛋做蛋糕。”他们刚介绍完了,小鹿又 问道”你们中间谁最大?谁最小呢?”9站出来,很骄傲地说“我是9,我最大。”
0耷拉着脑袋说“我最小。”“对,就是这个 表示什么都没有的0。”
9用冷淡的口气说道。 9刚说完,动物们和它的数字兄弟都笑了。
0更加不好意思了,动物们看到0这么没 有用,都不愿意和它一起玩。它们在一起唱呀!跳呀!非常开心。
突然一只 大象在里面挣扎了很久,用了很大的力气总想爬上 来,它爬呀爬累得满头大汗,腿也挂破了,鲜血直流。 可是,怎么也爬不上来,它只好在里面大声“救命 呀!救命呀!”动物 们听到了,就纷纷跑到洞口边,想把大象救出来。
数字1到9也来帮忙了。他们组成最大的数字987654321,显示了最大的力量, 费了九牛二虎之力,也没有把大象拉上来。
这个时候,只听见后 面有一个微弱的声音说道“我也来试试。”它们一看是0,就勉 强的同意它也来帮忙。
它们重新组成数字9876543210,它们的力量一下子 就增大10倍。哈哈…… 一下子就把大象拉上来了。
动物们都很感谢数字兄 弟,同时也为冷落了0感到愧疚,它们都来到0的身 边,愿意和0做朋友。数字兄弟也开始重视0了,愿意 和它一起玩耍。
从此以后,0再也不自卑了,它觉得自己还是很有用的。 2、美丽的植树图案 很久很久以前, *** 数字王国的国王过20岁生日,罗马数字王国派人送来了20棵珍贵的树,作为生日礼物。
*** 数 啊。“20”大臣张榜招贤,凡是能巧妙地栽这20棵树的人将有重赏。
可是,谁也设计不出来。 “20”大臣日夜思索,翻了大量的资料,又用石子进行了一次次的试验。
他画了成千成万个图样。画着,试着,忽然,他 眼睛一亮,看到了一张极其美妙的图案。
“20”大臣立即把图案奉献给国王。国王见了非常高兴,“20”大臣指着图案对国王说:“陛下,您看,图中所栽的树不 论横数、竖数或斜数,每行都是4棵,这样最多18行。”
国王赞叹不止,说:“这样美丽奇妙的植树图案,我在任何公园都没有看见过,简直太美妙了。我要重重地赏您!” 。
我要重重地赏您!” 国王赞叹不止,说:“这样美丽奇妙的植树图案,我在任何公园都没有看见过,简直太美妙了。我要重重地赏您!” “对,这是一位名叫山姆·劳埃德的数学家发明和设计的,我只是把他设计的图案用到植树问题上来。”
“20”大臣据实说。 “好,好,你能用上这个图案,也是有功的。”
说着,国王宣布了对“20”大臣的奖赏,并将这个图案命名为“20图案”, 是世界上最美丽的植树图案。 国王立即派人按照“20图案”把20棵树栽在宫廷的花园里。
从此,这美丽的植树图案就一直流传至今。 3、蝴蝶效应 气象学家Lorenz提出一篇论文,名叫“一只蝴蝶拍一下翅膀会不会在Taxas州引起龙卷风?”论述某系统如果初期条件差 一点点,结果会很不稳定,他把这种现象戏称做“蝴蝶效应”。
就像我们投掷骰子两次,无论我们如何刻意去投掷,两次的物是 相同的。 Lorenz为何要写这篇论文呢? 这故事发生在1961年的某个冬天,他如往常一般在办公室操作气象电脑。
平时,他只需要将温度、湿度、压力等气象数据 输入,电脑就会依据三个内建的微分方程式,计算出下一刻可能的气象数据,因此模拟出气象变化图。 这一天,Lorenz想更进一步了解某段纪录的后续变化,他把某时刻的气象数据重新输入电脑,让电脑计算出更多的后续结 果。
当时,电脑处理数据资料的数度不快,在结果出来之前,足够他喝杯咖啡并和友人闲聊一阵。在一小,结果出来了,不过令 他目瞪口呆。
结果和原资讯两相比较,初期数据还差不多,越到后期,数据差异就越大了,就像是不同的两笔资讯。而问题并不 出在电脑,问题是他输入的数据差了0.000127,而这些微的差异却造成天壤之别。
㈩ 数学趣味小故事 关于数学的趣味故事
1、泰勒斯:巧测金字塔。泰勒斯看到人们都在看告示,便上去看。原来告示穗侍上写着,法老要找世界上最聪明的人来测量金字塔的高度。于是就找法老。法老问泰勒斯用什么工具来量金字塔。泰勒斯说只用一根木棍和一把尺子,他把木棍插在金字塔旁边,等木棍的影子和木棍一样长的时候,他量了金字塔影子的长度和金字塔底面边长的一半。把这两个长度加起来就是金字塔的高度了。泰勒斯真是世界上最聪明的人,他不用爬到金字塔的顶上就方便量出了金字塔的高度。
2、田忌赛马:战国时期,齐威王与大将田忌赛马,齐威王和田忌各有三匹好马:上马,中马与下马。比赛分三次进行,每赛马以千金作赌。由于两猜茄吵者的马力相差无几,而齐威王的马分别比田忌的相应等级的马要好,所以一般人都以为田忌必输无疑。但是田忌采纳了门客孙膑(着名军事家)的意见,用下马对齐威王的上马,用上马对齐威王的中马,用中马对齐威王的下马,结果田忌以2比1胜齐威王而得千金。这是我国古代运用对策论思想解决问题的一个范例。
3、阿基米德的故事:国王做了一顶金王冠,他怀疑工匠用银子纳兆偷换了一部分金子,便要阿基米德鉴定它是不是纯金制的,且不能损坏王冠。阿基米德捧着这顶王冠整天苦苦思索,有一天,阿基米德去浴室洗澡,他跨入浴桶,随着身子浸入浴桶,一部分水就从桶边溢出,阿基米德看到这个现象,头脑中像闪过一道闪电:“我找到了!”阿基米德拿一块金块和一块重量相等的银块,分别放入一个盛满水的容器中,发现银块排出的水多得多。于是阿基米德拿了与王冠重量相等的金块,放入盛满水的容器里,测出排出的水量;再把王冠放入盛满水的容器里,看看排出的水量是否一样,问题就解决了。随着进一步研究,沿用至今的流体力学最重要基石——阿基米德定律诞生了。