导航:首页 > 前程往事 > 一元钱去哪里了悖论故事

一元钱去哪里了悖论故事

发布时间:2023-02-14 09:36:44

Ⅰ 典型的偷换概念题——“还有一元钱去哪了”

那一元钱本身是不存在的

三个人住店共30元,老板退回5元,那就是说他们三人总共花了25元;然后弟弟又退回每人一元,也就是说他们一共花了28元,加上老板弟弟拿的2元,刚好30元

Ⅱ 数学趣味故事一元钱哪去了解悟

有3个人去投宿,一晚30元.三个人每人掏了10元凑够30元交给了老板.后来老板说今天优惠只要25元就够了,拿出5元命令服务生退还给他们,服务生偷偷藏起了2元,然后,把剩下的3元钱分给了那三个人,
每人分到1元.这样,一开始每人掏了10元,现在又退回1元,也就是10-1=9,每人只花了9元钱,3个人每人9元,3 X 9 = 27元 + 服务生藏起的2元=29元,还有一元钱去了哪里?

答案:每人所花费的 9 元钱已经包括了服务生藏起来的 2 元(即优惠价 25 元+服务生私藏 2 元=27 元=3*9 元)因此,在计算这 30 元的组成时不能算上服务生私藏的那 2 元钱,而应该 加上退还给每人的 1 元钱。即:3*9+3*1=30 元正好!还可以换个角度想..那三个人一共出了 30 元,花了 25 元,服务生藏起来了 2 元,所以每人花了九元,加上分得的 1 元,刚好是 30 元。因此这一元钱就找到了。 小结:这道题迷惑人主要是它把那 2 元钱从 27 元钱当中分离了出来,原题的算法错误的认为 服务员私自留下的 2 元不包含在 27 元当中,所以也就有了少 1 元钱的错误结果; 而实际上私 自留下的 2 元钱就包含在这 27 元当中,再加上退回的 3 元钱,结果正好是 30 元。

Ⅲ 一位妈妈带着女儿去超市购物,女儿看到货架上标价19.9元的可乐,于是要求妈妈给她买一瓶。

1、你花了17块,还有三块钱分别在你爸爸妈妈手里。一共20没有少没有多啊。
2、你想想你只买了17块东西为什么却欠了9+9=18块,因为还有一块钱在你手里啊。
而你现在却用这个18块钱来+1块,这个是没有任何意义的,因为这18块钱里面本来就包含了这1块钱啊。

3、最后给你看看这个题目的原版和加强版吧:(转自果壳,耐心看完这个你就能够融会贯通以至于去忽悠人了O(∩_∩)O)

三个旅客住进一家旅馆,老板收了他们 30 元,每人 10 元。后来老板决定给他们一些优惠,给服务员 5 元让他退给旅客。很明显老板不会数学,给了个不能被 3 整除的数。聪明的服务员自己偷偷地藏下了 2 元,然后退给每个旅客 1 元。现在每个顾客优惠了 1 元,那么每人交了 9 元,一共交了 27 元,加上服务员的 2 元就是 29 元。可是一开始他们给了老板 30 元,那另外的一元到哪里去了呢?

几乎每个人看了之后都会上当,再看一遍之后还是觉得无比正确,再看一遍⋯⋯不少马大虎直到看了答案才明白过来,没想到这么简单啊。上网一搜,标题都是“一年级趣味数学”,自尊心大受打击。

这个谜题最早是从哪儿来的呢?在中文网络中最流行的说法是,这个谜题来自一道“新西兰面试题”,真实性等待谣言粉碎机鉴定。事实上,这个问题的历史可能比大家想象的要长得多,它至少可以追溯到加利福尼亚大学 1949 年出版的数学课本中,而最早的出处恐怕已经不得而知了。

这个“悖论”的成功得益于 27 + 2 = 29 跟 30 相差无几(若是相差太大必然会引起怀疑),想象力丰富的听众还没弄明白是两个什么东西加了起来,就开始浮想联翩了。谁知道这个算式本身就是错的,2 元已经包括在 27 元里面了,27 - 2 = 25 就是老板手里的钱,并没有少。

后来人们给出了一个专属于这个谜题的解答,自嘲当初的失误:“几个月后,其中的两个旅客又住进了这家旅馆,老板收了每人 10 元,一共 20 元。后来他又想给旅客优惠,又是 5 元;然后又是那个服务员,不过这次他扣下了 3 元,还给旅客每人 1 元。现在每个旅客交了 9 元,合起来是 18 元,加上服务员的 3 元,一共 21 元。看,少了的那 1 元在这里”。

Ⅳ 有趣的数学悖论小故事

1、唐·吉诃德悖论

小说《唐·吉诃德》里描写过一个国家,它有一条奇怪的法律,每个旅游者都要回答一个问题:“你来这里做什么?”回答对了,一切都好办;回答错了,就要被绞死。

一天,有个旅游者回答:“我来这里是要被绞死。”

旅游者被送到国王那里。国王苦苦想了好久:他回答得是对还是错?究竟要不要把他绞死。如果说他回答得对,那就不要绞死他,可这样一来,他的回答又成了错的了!如果说他回答错了,那就要绞死他,但这恰恰又证明他回答对了。实在是左右为难!

2、梵学者的预言

一天,梵学者与他的女儿苏耶发生了争论。

苏椰:你是一个大骗子,爸爸。你根本不能预言未来。

学者:我肯定能。

苏椰:不,你不能。我现在就可以证明它!

苏椰在一张纸上写了一些字,折起来,压在水晶球下。她说:

“我写了一件事,它在3点钟前可能发生,也可能不发生。请你预言它究竟是不是会发生,在这张白卡片上写下‘是’字或‘不’字。要是你写错了,你答应现在就买辆汽车给我,不要拖到以后好吗?”

“好,一言为定。”学者在卡片上写了一个字。

3点钟时,苏椰把水晶球下面的纸拿出来,高声读道:“在下午3点以前,你将写一个‘不’字在卡片上。”

学者在卡片上写的是“是”字,他预言错了:“在下午3点以前,写一个‘不’字在卡片上”这一件事并未发生。但如果他在卡片上写的是“不”呢?也还错!因为写“不”就表示他预言卡片上的事不会发生,但它恰恰发生了——他在卡片上写的就是一个‘不’字。

苏椰笑了:“我想要一辆红色的赛车,爸爸,要带斗形座的。”

3、意想不到的老虎

公主要和迈克结婚,国王提出一个条件:

“我亲爱的,如果迈克打死这五个门后藏着的一只老虎,你就可以和他结婚。迈克必须顺次序开门,从1号门开始。他事先不知道哪个房间里有老虎,只有开了那扇门才知道。这只老虎的出现将是料想不到的。”

迈克看着这些门,对自己说道:

“如果我打开了四个空房间的门,我就会知道老虎在第五个房间。可是,国王说我不能事先知道它在哪里,所以老虎不可能在第五个房间。”

“五被排除了,所以老虎必然在前四个房间内。同样的推理,老虎也不会在最后一个房间——第四间内。”

按同样的理由推下去,迈克证明老虎不能在第三、第二和第一个房间。迈克十分快乐,他满怀信心地去看门。使他惊骇的是,老虎从第二个房间跳了出来。

迈克的推理并没有错,但他失败了。老虎的出现完全出乎意料,表明国王遵守了他的诺言。也许,迈克进行推理的本身就与国王关于老虎“料想不到”的条件发生了矛盾。迄今为止,逻辑学家对于迈克究竟错在哪里还末得到一致意见。

4、钱包游戏

史密斯教授和两个学生一道吃午饭。教授说:“我来告诉你们一个新游戏。把你们的钱包放在桌子上,我来数里面的钱。钱少的人可以赢掉另一个钱包中的所有钱。”

学生甲想:“如果我的钱多,就会输掉我这些钱;如果他的多,我就会赢多于我的钱。所以赢的要比输的多,这个游戏对我有利。”

同样的道理,学生乙也认为这个游戏对他有利。

请问,一个游戏怎么会对双方都有利呢?

5、一块钱哪儿去了?

一个唱片商店里,卖30张老式硬唱片,一块钱两张;另外30张软唱片是一块钱三张。那天,这60张唱片卖光了。30张硬唱片收入15元,30张软唱片收入10元,总共是25元。

第二天,老板又拿出60张唱片。他想:“如果30张唱片是一块钱卖两张,30张是一块钱卖三张,何不放在一起,两块钱卖5张呢?”这一天,60张唱片全按两块钱5张卖出去了。老板点钱时才发现,只卖得24元,而不是25元。

这一块钱到哪儿去了呢?

6、惊人的编码

外星的一位科学家基塔先生,来到地球收集人类的资料,遇到了赫尔曼博士。

赫尔曼:“你何不带一套大英网络全书回去?这套书最全面地汇总了我们的所有知识。”

基塔:“可惜,我带不走那么重的东西。不过,我可以把整套网络全书编码,然后只要在这根金属棒上作个标记,就代表了网络全书中的全部信息。”真是再简单不过了!

基塔先生是怎样做到的呢?

基塔:“我先把每个字母、数字、符号,都用一个数来代表,零用来隔开它们。例如cat一词就编为3-0-1-0-22。我用高级袖珍计算机快速扫描,就能把网络全书的全部内容转变为一个庞大的数字。前面加一个小数点,就使它变成了一个十进制的分数,例如0、2015015011……

基塔先生在金属棒上找到了一个点,这个点将棒分为a和b两段,而a/b刚好等于上面那个十进制分数值。

基塔:“回去后,测出a和b的值,就求出了它们的比值;根据编码的规定,你们的网络全书就被破译出来了。”

这样,基塔离开地球时只带了一根金属棒,而他却已“满载而归”了!

7、不可逃遁的点

帕特先生沿着一条小路上山。他早晨七点动身,当晚七点到达山顶。第二天早晨沿同一小路下,晚上七点又回到山脚,遇见了拓扑学老师克莱因。

克莱因:“帕特,你可曾知道你今天下山时走过这样一个地点,你通过这点的时刻恰好与你昨天上山时通过这点的时刻完全相同?”

帕特:“这绝不可能!我走路时快时慢,有时还停下来休息。”

克莱因:“当你开始下山时,设想你有一个替身同时开始登山,这个替身登山的过程同你昨天登山时完全相同。你和这个替身必定要相遇。我不能断定你们在哪一点相遇,但一定会有这样一点。”

帕特明白了。你明白了吗?

8、橡皮绳上的蠕虫

橡皮绳长1公里,一条蠕虫在它的一端。蠕虫以每秒1厘米的稳定速度沿橡皮绳爬行;而橡皮绳每过1秒钟就拉长1公里。如此下去,蠕虫最后究竟会不会到达终点呢?

乍一想,随着橡皮绳的拉伸,蠕虫离终点越来越远了。但细心的读者会想到:随着橡皮绳的每次拉伸,蠕虫也向前挪了。

如果用数学公式表示,蠕虫在第n秒未在橡皮绳上的位置,表示为整条绳的.分数就是(推导过程从略):

当n足够大(约为e100000)时,上式的值就超过了1,也就是说蠕虫爬到了终点。

9、棘手的电灯

一盏电灯,用按钮来开关。假定把灯拧开一分钟,然后关掉半分钟,再拧开1/4分钟,再关掉1/8分钟,如此往复,这一过程的末了恰好是两分钟。

那么,在这一过程结束时,电灯是开着,还是关着?这个问题实在是难!

10、罗素悖论

一天,一个理发师挂出了一块招牌:“村里所有不自己理发的人都由我给他们理发,我也只给这些人理发。”于是有人问他:“您的头发由谁理呢?”理发师顿时哑口无言。因为如果他给自己理发,那么他就属于自己给自己理发的那一类。但是,招牌上说明他不给这类理发,因此他不能自己理发。如果由另外一个人给他理发,他就是不给自己理发的人,而招牌上说明他要给所有不自己理发的人理发,因此他应该自己理。由此可见,不管做怎样的推论,理发师所说的话总是自相矛盾的。这是一个着名的悖论,称为“罗素悖论”。这是由英国哲学家罗素提出来的,他把关于集合论的一个着名悖论用故事通俗地表述出来。1874年,德国数学家康托尔创立了集合论,很快渗透到大部分数学分支,成为他们的基础。到19世纪末,全部数学几乎都建立在集合论是基础上了。就在这时,集合论中接连出现了一些自相矛盾的结果,特别是1902年“罗素悖论”的提出,它极为简单、明确、通俗。于是,数学的基础被动摇了,这就是所谓的第三次“数学危机”。此后,为了克服这些悖论,数学家们做了大量研究工作,由此产生了大量新成果,也带来了数学观念的变革。

11、上帝不是万能的

用反证法证明证明:假设上帝是万能的,那么上帝能造出一块他自己都举不起来的石头,否则上帝就不是万能的;但是上帝又举不起这块石头,因此上帝不是万能的,这与假设矛盾;所以原假设不成立,即上帝不是万能的。

Ⅳ 【解密】那些超经典的谜题最早出自哪儿

2. 英国人住在红房子里。 3. 西班牙人养狗。 4. 住在绿房子里的人喝咖啡。 5. 乌克兰人喝茶。 6. 绿房子就在乳白色房子的右边。 7. 抽流金岁月(烟名)的人养蜗牛。 8. 抽薄荷烟的住在黄房子里。 9. 住在中间的房子里的人喝牛奶。 10. 挪威人住在第一座房子里。 11. 抽契斯特菲尔德(烟名)的人住在养狐狸的人旁边。 12. 抽薄荷烟的人住在养马的人旁边。 13. 抽好彩(烟名)的人喝橙汁。 14. 日本人抽百乐门(烟名)。 15. 挪威人住在蓝房子隔壁。 那么,谁喝水?谁养斑马?这个谜题已知的最早出处是 1962 年 12 月 17 日的《生活》(Life)杂志国际版上。1963 年 3 月 25 日,杂志公布了答案和世界各地数百个解决者的名单。这个谜题有无数的变种,其中一个就是网络上流传更广的哪国人养鱼。人怕出名猪怕壮,这个叙述繁琐的谜题竟莫名其妙地归功于了 20 世纪最聪明的大脑爱因斯坦。此题乃爱因斯坦年幼时所编的说法广为流传,于是这个谜题也经常被叫做爱因斯坦谜题(Einstein‘s Puzzle)。但也有人说,作者其实是路易斯·卡罗尔(Lewis Carroll)。好吧,我们不要管这些追星族了,因为现在没有任何证据证明作者是他们中的任何一个。况且,谜题里的香烟品牌在爱因斯坦小时候还没有出现呢。 海盗分金谜题(Pirate Puzzle)这是个流传很广的谜题,包含了诸如海盗、金钱、民主之类的流行元素。故事是这样的:有五个理性的海盗 A、B、C、D、E,他们得到了 100 个金币,要进行分赃。海盗世界等级分明,这五个海盗的排名如下:A B C D E。分赃制度也很民主:首先由等级最高的海盗提出一个分配方案,然后所有海盗(包括提议人)投票表决是否接受。若有半数或半数以上的人同意,则通过提议,否则把提议人扔下船去,由等级第二高的海盗接着提议,以此类推。海盗们考虑的因素如下:首先自己要活下去,然后要得到最多的钱;如果得到的钱反正都一样,他们更乐意把别人害死。对于 A 来说,最佳方案是这样的:A 自己得 98,B 分得 0,C 分得 1,D 分得 0,E 分得 1。解答几乎出乎所有人的意料。一般我们都会把金币分给其他四个海盗以求他们通过提议而保住性命,而解答却告诉我们贪心更好。海盗谜题第一次出现在 1999 年 5 月的《科学美国人》上,文章标题为《海盗谜题》(A Puzzle for Pirate),作者是英国数学家伊恩·斯图尔特(Ian Stewart)。他详细地分析了这个问题,并把海盗的人数推广到 n 个,得到了十分有趣的结论。这个谜题是他从斯蒂芬·奥莫德罗(Stephen M. Omohundro)那儿听说的,据猜测,这个谜题已经流传了至少 10 年。无论从哪个方面来看,这都是一道经典的谜题。在任何博弈论的课程中,都会讲到这个有趣的问题。 一块钱哪儿去了?三个旅客住进一家旅馆,老板收了他们 30 元,每人 10 元。后来老板决定给他们一些优惠,给服务员 5 元让他退给旅客。很明显老板不会数学,给了个不能被 3 整除的数。聪明的服务员自己偷偷地藏下了 2 元,然后退给每个旅客 1 元。现在每个顾客优惠了 1 元,那么每人交了 9 元,一共交了 27 元,加上服务员的 2 元就是 29 元。可是一开始他们给了老板 30 元,那另外的一元到哪里去了呢?几乎每个人看了之后都会上当,再看一遍之后还是觉得无比正确,再看一遍�6�8�6�8不少马大虎直到看了答案才明白过来,没想到这么简单啊。上网一搜,标题都是一年级趣味数学,自尊心大受打击。 这个谜题最早是从哪儿来的呢?在中文网络中最流行的说法是,这个谜题来自一道新西兰面试题,真实性等待谣言粉碎机鉴定。事实上,这个问题的历史可能比大家想象的要长得多,它至少可以追溯到加利福尼亚大学 1949 年出版的数学课本中,而最早的出处恐怕已经不得而知了。这个悖论的成功得益于 27 + 2 = 29 跟 30 相差无几(若是相差太大必然会引起怀疑),想象力丰富的听众还没弄明白是两个什么东西加了起来,就开始浮想联翩了。谁知道这个算式本身就是错的,2 元已经包括在 27 元里面了,27 - 2 = 25 就是老板手里的钱,并没有少。后来人们给出了一个专属于这个谜题的解答,自嘲当初的失误:几个月后,其中的两个旅客又住进了这家旅馆,老板收了每人 10 元,一共 20 元。后来他又想给旅客优惠,又是 5 元;然后又是那个服务员,不过这次他扣下了 3 元,还给旅客每人 1 元。现在每个旅客交了 9 元,合起来是 18 元,加上服务员的 3 元,一共 21 元。看,少了的那 1 元在这里。 不可能完成的谜题(Impossible Puzzle)有两个不相等的整数 x,y ,它们都大于 1 且和小于 100 ,数学家和先生知道这两个数的和,数学家积先生知道这两个数的积,他们进行了如下对话: 积先生:我不知道 x 和 y 分别是啥。 和先生:我知道你不知道。 积先生:我现在知道了。 和先生:如果你知道了,那我也知道了。那么,x 和 y 各是多少?现在知道为什么这叫做不可能完成的谜题了吧,因为光看这几句废话我们似乎根本不可能算出 x 和 y 来。1969 年,荷兰数学家汉斯·弗莱登塔尔(Hans Freudenthal)发表了这个谜题,当时被称为弗莱登塔尔问题(Freudenthal Problem)。直到 1976 年大卫·斯布罗斯(David Sprows)在《数学杂志》(Mathematics Magazine)上才给出了这个问题的英文版本。1979 年,马丁·加德纳(Martin Gardner)在他的专栏上又一次提到了这个谜题,并称它为不可能完成的谜题,之后这个问题就开始大红大紫了。它有无数个变种,并广泛流传。题目描述看似简单,解答却并不简单。图灵奖获得者艾兹赫尔·迪杰斯特拉(Edsger W. Dijkstra)说他在 1978 年曾经解决了这个问题的另一个版本。之前他无数次尝试心算解决它却屡屡入睡,终于在一个无眠的夜晚,花了六个小时,硬是没有用纸和笔,在脑子里解决了那个问题。在证明过程中,他还小小地用了一下哥德巴赫猜想。

Ⅵ 求五个数学小故事(网上能查到的,告诉我题目就行),谢谢

八戒吃了几个山桃
八戒去花果山找悟空,大圣不在家。小猴子们热情地招待八戒,采了山中最好吃的山桃整整100个,八戒高兴地说:“大家一起吃!”可怎样吃呢,数了数共30只猴子,八戒找个树枝在地上左画右画,列起了算式,100÷30=3.....1
八戒指着上面的3,大方的说,“你们一个人吃3个山桃吧,瞧,我就吃那剩下的1个吧!”小猴子们很感激八戒,纷纷道谢,然后每人拿了各自的一份。
悟空回来后,小猴子们对悟空讲今天八戒如何大方,如何自已只吃一个山桃,悟空看了八戒的列式,大叫,“好个呆子,多吃了山桃竟然还嘴硬,我去找他!”
哈哈,你知道八戒吃了几个山桃?

阿拉伯数字的由来
小明是个喜欢提问的孩子。一天,他对0—9这几个数字产生兴趣:为什么它们被称为“阿拉伯数字”呢?于是,他就去问妈妈:“0—9既然叫‘阿拉伯数字’,那肯定是阿拉伯人发明的了,对吗妈妈?”
妈妈摇摇头说:“阿拉伯数字实际上是印度人发明的。大约在1500年前,印度人就用一种特殊的字来表示数目,这些字有10个,只要一笔两笔就能写成。后来,这些数字传入阿拉伯,阿拉伯人觉得这些数字简单、实用,就在自己的国家广泛使用,并又传到了欧洲。就这样,慢慢变成了我们今天使用的数字。因为阿拉伯人在传播这些数字发挥了很大的作用,人们就习惯了称这种数字为‘阿拉伯数字’。”
小明听了说:“原来是这样。妈妈,这可不可以叫做‘将错就错’呢?”妈妈笑了。

儿歌比赛
动物学校举办儿歌比赛,大象老师做裁判。
小猴第一个举手,开始朗诵:“进位加法我会算,数位对齐才能加。个位对齐个位加,满十要向十位进。十位相加再加一,得数算得快又准。”
小猴刚说完,小狗又开始朗诵:“退位减法并不难,数位对齐才能减。个位数小不够减,要向十位借个一。十位退一是一十,退了以后少个一。十位数字怎么减,十位退一再去减。”
大家都为它们的精彩表演鼓掌。大象老师说:“它们的儿歌让我们明白了进位加法和退位减法,它们两个都应该得冠军,好不好?”大家同意并鼓掌祝贺它们。

﹤、﹥和﹦的本领
很久以前,数学王国比较混乱。0—9十个兄弟不仅在王国称霸,而且彼此吹嘘自己的本领最大。数学天使看到这种情况很生气,派﹤、﹥和﹦三个小天使到数学王国建立次序,避免混乱。
三个小天使来到数学王国,0—9十个兄弟轻蔑地看着它们。9问道:“你们三个来数学王国干什么,我们不欢迎你们!”
﹦笑着说:“我们是天使派来你们王国的法官,帮你们治理好你们国家。我是‘等号’,这两位是‘大于号’和‘小于号’,它们开口朝谁,谁就大;它们尖尖朝谁,谁就小。”
0—9十个兄弟听说它们是天使派来的法官,就乖乖地服从﹤、﹥和﹦的命令。从此,数学王国有了严格的次序,任何人不会违反。

小熊开店
小熊不喜欢学习,只想做生意,于是在学校旁边开了个水果店。小兔和小猴是它的同学,它们商量好,要教训这个不爱上学的懒家伙。
它们来到小熊的水果店。
“桃子怎么卖呀?”小猴问。
“第一筐里6元3公斤,第二筐里6元2公斤。”小熊回答。
小猴又说:“如果我从两筐里拿5公斤,要付你12元,对吗?”
小熊点点头。
“那我全买下,既然5公斤12元,那60公斤就是12×12=144元,对不对?”
“正是,正是。”小熊讲。
于是小猴买了所有的桃子,付了钱,和小兔高兴地走了。
晚上回到家,小熊结帐,怎么算都是亏本的。第二天,小猴、小兔找到小熊把情况说了,笑着说:“都是你学习不好,我们才来教训你一下”,并把少给的钱补给了小熊。
小熊惭愧地低下了头,从此每天上课都很认真。它们三个成了好朋友。

唐僧师徒摘桃子
一天,唐僧命徒弟悟空、八戒、沙僧三人去花果山摘些桃子。不久,徒弟三人摘完桃子高高兴兴回来。师父唐僧问:你们每人各摘回多少个桃子?
八戒憨笑着说:师父,我来考考你。我们每人摘的一样多,我筐里的桃子不到100个,如果3个3个地数,数到最后还剩1个。你算算,我们每人摘了多少个?
沙僧神秘地说:师父,我也来考考你。我筐里的桃子,如果4个4个地数,数到最后还剩1个。你算算,我们每人摘了多少个?
悟空笑眯眯地说:师父,我也来考考你。我筐里的桃子,如果5个5个地数,数到最后还剩1个。你算算,我们每人摘多少个?
唐僧很快说出他们每人摘桃子的个数。你知道他们每人摘多少个桃子吗

数学优秀小故事
有一个年轻的小伙子来找刘先生,并自我介绍说:“我叫于江,这次我带领了一个旅游团到香港旅游,听说您的大酒店环境舒适,服务周到,我们想来住你们酒店。”
刘先生连忙热情地说:“欢迎,欢迎,不知贵团一共有多少人?”
“人嘛,还可以,是一个大团。”
刘先生心里一阵惊喜:一个大团,又是一笔大生意,真是太好了。
作为一个导游,于江看出了刘先生的心思,他慢条斯理地说:“先生,如果你能算出我团的人数,我们就住您们酒店了。”
“你请说吧。”刘先生自信地说。
“如果我把我的团平均分成四组,多出一人,再把每小组平均分成四份,结果又多出一人,再把分成的四小组分成四份,结果又多出一人,当然,也包括我,请问我们至少有多少人?”
“一共多少呢?”刘先生马上思考起来,他一定要接下这笔生意,“没有具体的数字,该如何下手呢?”他是精明的生意人,很快说出答案:“至少八十五人,对不对?”
于江先生高兴地说:“一点不错,就是八十五人。请说说您的算法。”
“人数最少的情况是最后一次四等分时,每份为一人,由此推理得到:第三次分之前有1×4+1=5(人),第二次分之前有5×4+1=21(人),第一次分之前有21×4+1=85(人)。”
“好,我们今天就住在您这儿了。”
“那你们有多少男的和女的?”
“有55个男的,30个女的。”
“我们这儿现在只有11人的房间,7人、5人的房间,你们想怎么住?”
“当然是先生您给安排了,但必须男女分开,也不能有空床位。”
又出了一个题目,刘先生还从没碰到过这样的客人,他只好又得花一番心思了。
瞑思苦想之后,他终于得出了最佳方案:男的两间11人房间,四间7人房,一间5人房;女的一间11人房间,两间7人房,一间5人的,一共11间。
于江先生看了他的安排后,非常满意,马上办了住宿手续。
一桩大生意做成了,虽然复杂了一点,但刘先生的心里还是十分高兴的。

聪明的小男孩
从前,一个国王经常给身边的大臣出难题来取乐,如果大臣答对了,他将用小恩小惠给点赏赐;如果答不出来,那将受罚,甚至被砍头。
一天,国王指着宫里的一个池塘问:“谁能说出池子里有多少桶水,我就赏他珠宝。如果说不出来,我就要‘赏’你们每人50大鞭。”大臣们被这突如其来的问题难住了。
正在大臣们心慌意乱之际,走过来一个放牛的小男孩。他问清了事情的缘由之后说:“我愿意见见这位国王。”
大臣们把小男孩带到了国王身边。国王见眼前的小男孩又黑又瘦又小,便怀疑说:“这个问题答上来有奖,答不上来可要被砍头的,你知道吗?”在场的人都替这个小男孩捏了一把汗,可小男孩却不慌不忙地回答出国王的问题。国王无奈之下,拿出珠宝奖励给了小男孩。小朋友们,你知道他是怎样回答的吗?
其实,国王出的是一道条件不足的问题。在正常的思维模式下是无法找出正确答案的。小男孩正好抓住这一关键。他是这样回答的:“这要看桶有多大:如果桶和池塘一样大,就是一桶水;如果桶只有池塘一半大,就是有两桶水;如果桶是池塘的三分之一大,就是3桶水……”
小男孩实际上打破了习惯性的思维模式,对具体的问题进行具体的分析,他的头脑多么聪明,多么灵活啊!

一个故事引发的数学家
陈景润是家喻户晓的数学家,在攻克歌德巴赫猜想方面作出了重大贡献,创立了着名的“陈氏定理”,所以有许多人亲切地称他为“数学王子”。但有谁会想到,他的成就源于一个故事。
1937年,勤奋的陈景润考上了福州英华书院。一天,沈元老师在数学课上给大家讲了一个故事:“200年前有个法国人发现了一个有趣的现象:6=3+3,8=5+3,10=5+5,12=5+7,28=5+23,100=11+89。每个大于4的偶数都可以表示为两个奇数之和。因为这个结论没有得到证明,所以还是一个猜想。大数学欧拉说过:虽然我不能证明它,但是我确信这个结论是正确的。
从此,陈景润对这个奇妙问题产生了浓厚的兴趣。课余时间他最爱到图书馆,不仅读了中学辅导书,这些大学的数理化课程教材他也如饥似渴地阅读。

阅读全文

与一元钱去哪里了悖论故事相关的资料

热点内容
事业编和辅警哪个难考 浏览:936
日本人说你很幸福要怎么回复 浏览:79
爱情里的数字109代表什么意思 浏览:474
怎么做才能挽回说分手的爱情 浏览:485
写自己的爱情怎么命名 浏览:126
漫威美女角色有哪些 浏览:614
没有了爱情的婚姻该如何办 浏览:997
体制内公务员事业编有什么不同 浏览:668
幸福树种下后多少天能扎好根 浏览:727
事业编合同多久 浏览:404
经济转型要多久完成 浏览:822
中国有哪些经济王牌 浏览:286
爱情有两种是什么 浏览:343
重庆隆鑫通机事业部在哪里 浏览:996
脾气不好怎么维持婚姻 浏览:179
有哪些故事需要缓缓的诉说 浏览:20
为什么故事只讲事实的小部分 浏览:736
出轨后认识到错误了如何挽回婚姻 浏览:817
什么是健康保健师 浏览:929
想写一个故事怎么写 浏览:374