导航:首页 > 前程往事 > 高斯有哪些故事

高斯有哪些故事

发布时间:2022-02-10 04:02:19

❶ 高斯的故事

故事一:高斯的出身:高斯于1777年4月30日出生于不伦瑞克。高斯是一对普通夫妇的儿子。他的母亲是一个贫穷石匠的女儿,虽然十分聪明,但却没有接受过教育,近似于文盲。在她成为高斯父亲的第二个妻子之前,她从事女佣工作。他的父亲曾做过园丁,工头,商人的助手和一个小保险公司的评估师(关于高斯父亲的职业有很多版本)。他曾说,他能够在脑袋中进行复杂的计算。
故事二:在高斯三岁时,他爸爸正要给工人发薪水的时候,小高斯站了起来说:“爸爸,你弄错了。”然后他说了另外一个数目.原来三岁的小高斯趴在地板上,一直暗地里跟着他爸爸计算该给谁多少工钱.重算的结果证明小高斯是对的,这把站在那里的大人都吓的目瞪口呆.(高斯曾回忆说:我在学说话前就会计算了。)

❷ 高斯有哪些人生经历

德国着名的数学家、物理学家、天文学家、大地测量学家,卡尔·弗里德里希·高斯1777年生于不伦瑞克的一个工匠家庭,幼时家境贫困,但聪敏异常,受一位贵族的资助才进学校受教育。1795~1798年在格丁根大学学习1798年转入黑尔姆施泰特大学,1799年因证明了代数基本定理而获博士学位。从1807年起担任格丁根大学的教授、格丁根天文台的台长直至1855年在哥廷根逝世。

高斯画像

高斯在十五岁就进入不伦瑞克学院,并在那里开始了对高等数学的研究。他独立发现了二项式定理的一般形式、二次互反律、质数分布定理以及算术几何平均等数学规律。1795年高斯进入哥廷根大学。1796年,19岁的高斯得到了一个数学史上极重要的结果,就是《正十七边形尺规作图之理论与方法》。5年后的1801年高斯又证明了“Fermat素数”等。此后高斯对数学的研究一直都没有停止过,直到1855年2月一天的清晨他于睡梦中去世。

高斯的数学研究成就遍及了数学的各个领域,在数论、非欧几何、徽分几何、超几何级数、复变函数论以及椭圆函数论等方面均有开创性贡献。与毕达哥拉斯派的数学研究相反,他对数学的研究很注重其应用性,并且很喜欢用数学研究天文学、大地测量学和磁学。

高斯小的时候,他的父亲是一个泥瓦厂的工头,所以每星期六他总是要发薪水给工人。有一次高斯的父亲发薪水的时候,小高斯站起来说:“爸爸,你弄错了。”然后他说了另一个与父亲所算的不同的数目。别看小高斯一直趴在地板上没事人似的,其实他一直在暗地里跟着爸爸计算该给谁多少工钱。结果他们又重算了一遍证明小高斯是对的,这使大人们都吓得目瞪口呆,因为当时的小高斯才三岁。高斯还常说其实他在学讲话之前就已经学会计算了,还常说他问了大人字母如何发音后,就自己学着读起书来。

高斯是7岁进的小学。后来老师在算数课上出了一道难题:把1到100的整数写下来,然后把它们加起来!看着孩子们才刚开始学做题,老师心想他可以休息一下了,没想到的是还不到几秒钟,高斯已经把答案交到讲桌上了。其他的学生把数字一个个加起来,额头都出了汗水,但高斯却静静坐着,对老师投来的,轻蔑的、怀疑的眼光毫不在意。考完后,老师一张张地检查着答案。大部分都做错了,出错的学生就要挨一顿鞭打。最后,高斯的答案被翻了过来,老师大吃一惊,只见上面只有一个数字5050,这当然就是正确答案。高斯对他的答案给出了这样的解释:1+100=101,2+99=101,3+98=101……49+52=101,50+51=101,一共有50对和为101的数目,所以答案是50×101=5050。如此小小年纪的高斯就找到了算术级数的对称性,可见他在数学方面的天性。

质数分布定理和最小二乘法被高斯发现是在他18岁的时候。高斯随后专注于曲面与曲线的计算,并成功得到高斯钟形曲线即正态分布曲线,其函数被命名为标准正态分布或者是高斯分布,并被大量运用于概率的计算中。

高斯对复数运用的总结是在计算谷神星轨迹时进行的,而三角形全等定理的概念和二次互反律的证明是在他的第一本着名的着作《数论》中论述的。高斯在他的建立在最小二乘法基础上的测量平差理论的帮助下,结算出天体的运行轨迹。并用这种方法,发现了谷神星的运行轨迹。谷神星于1801年由意大利天文学家皮亚齐发现,但他因病耽误了观测,失去了这颗小行星的轨迹。皮亚齐以希腊神话中“丰收女神”来命名它,即谷神星,并将以前观测的位置发表出来,希望全球的天文学家一起寻找。高斯通过以前的三次观测数据,计算出了谷神星的运行轨迹。奥地利的一位天文学家依照高斯计算出的轨道,成功发现了这颗谷神星的位置。高斯由此闻名于天下,在他的着作《天体运动论》中曾着述过他推测谷神星轨迹的方法。

为了获知任意一年中复活节的日期,高斯还推导出了复活节日期的计算公式。高斯还主导了汉诺威公国的大地测量工作,通过他发明的各类数学测量方法,使测量的精度得到显着的提高。出于对实际应用的兴趣,他发明了日光反射仪,可以将光束反射至大约450公里外的地方。高斯后来不止一次地为原先的设计做出改进,他成功试制的镜式六分仪被广泛应用于对大地的测量。

当时高斯又开始研究曲面和投影的理论,是因为椭圆在球面上的正形投影理论可以解决当时大地测量中出现的许多问题。他还独立地提出了不能证明欧氏几何的平行公式具有‘物理的’必然性。但他的非欧几何理论并未发表。而后来的物理学相对论证明了高斯理论的正确性。

高斯曾试图在大地测量中通过测量三个山头所构成的三角形的内角和,以验证非欧几何的正确性,但并未成功。而后高斯的朋友鲍耶的儿子雅诺斯证明了非欧几何的存在,高斯对此感到很是欣喜。1840年,俄国人罗巴切夫斯基又用德文写了《平行线理论的几何研究》一文。这篇论文发表后,引起了高斯的注意,他非常重视这一论证,积极建议哥廷根大学聘请罗巴切夫斯基为通信院士。为了能直接阅读他的着作,63岁的高斯又开始学习俄语,并成功的搞定了这门语言。高斯在数学方面的种种成就使他无可非议的成为了徽分几何的始祖之一。

❸ 高斯的生平有哪些事迹

1777年4月30日,高斯生于德国不伦瑞克的一个工匠家庭,幼时家贫,受人资助才进入学校读书。16岁时进入哥廷根大学学习,后转入黑尔姆施泰特大学,1799年获得博士学位。从1807年起担任哥廷根大学教授兼哥廷根天文台台长直至逝世。

❹ 关于高斯的小故事

高斯的父亲是泥瓦厂的工头,每星期六他总是要发薪水给工人。在高斯三岁时,一次当他正要发薪

水的时候,小高斯站了起来说:“爸爸,你弄错了。” 然后他说了另外一个数目。原来三岁的小高

斯趴在地板上,一直暗地里跟着他爸爸计算该给谁多少工钱。重算的结果证明小高斯是对的,这把

站在那里的大人都吓的目瞪口呆。高斯常常带笑说,他在学讲话之前就已经学会计算了,还常说他

问了大人字母如何发音后,就自己学着读起书来。

(4)高斯有哪些故事扩展阅读:

高斯的成就:

高斯不仅对纯粹数学作出了意义深远的贡献,而且对20世纪的天文学、大地测量学和电磁学的实际

应用也作出了重要的贡献。高斯开辟了许多新的数学领域,从最抽象的代数数论到内蕴几何学,都

留下了他的足迹。

从研究风格、方法乃至所取得的具体成就方面,他都是18─19世纪之交的中坚人物。如果我们把18

世纪的数学家想象为一系列的高山峻岭,那么最后一个令人肃然起敬的巅峰就是高斯;如果把19世

纪的数学家想象为一条条江河,那么其源头就是高斯。高斯是"人类的骄傲"。天才、早熟、高产、

创造力不衰。 爱因斯坦曾评论说:“高斯对于近代物理学的发展,尤其是对于相对论的数学基础所

作的贡献,其重要性是超越一切,无与伦比的。”

❺ 高斯的生平事迹有哪些

在德国流传着一个关于天才男孩的故事,传说一个三岁的小孩帮助他的父亲纠正了借款账目中的错误。这位天才男孩就是后来有“数学王子”之称的高斯。

高斯是数学史上一个转折时期的重要代表人物,他的许多研究成果都具有划时代的意义。

1777年4月30日,高斯生于德国不伦瑞克的一个工匠家庭,幼时家贫,受人资助才进入学校读书。16岁时进入哥廷根大学学习,后转入黑尔姆施泰特大学,1799年获得博士学位。从1807年起担任哥廷根大学教授兼哥廷根天文台台长直至逝世。

被称为天才数学家的高斯,在很小的时候就展现出了极高的数学天赋。上小学的时候,他用很短的时间计算出了对自然数从1到100的求和。他所使用的方法是:对50对构造成和为101的数的求和。同时得到结果:5050。如果说这仅仅是小技巧的话,那么在他16岁的时候预测到了非欧氏几何的必然产生,并且还推导出了二项式定理的一般形式,并发展了数学分析的理论,就不得不承认他天才的智慧了。

在进入哥廷根大学的同年,高斯发现了质数分布定理和最小二乘法。接着他又转入曲面与曲线的计算,并成功得到高斯钟形曲线,这一曲线在概率计算中大量使用。次年,年仅17岁的他首次用尺规构造出了规则的17角形,为欧氏几何自古希腊以来做了首次重要的补充。

在1807年的时候,高斯成为了哥廷根大学的教授和当地天文台的台长,于是他开始涉足于小行星的研究,他利用自己创立的三次观测决定小行星轨道的计算方法,成功计算出了谷神星和智神星的轨道。此后,天文界对小行星轨道的计算几乎都采用这种方法。

1818年至1826年,高斯领导了汉诺威公国的大地测量工作,他利用测量平差和求解线性方程组的方法,使测量的精度得到了极大的提升。在此期间,他白天测量,夜晚计算,在刚开始的五六年间,他经历了上百万次的大地测量数据计算,后来他转入测量数据的研究和计算,从中推导了由椭圆面向圆球面投影时的公式,这些理论在今天仍有很大的应用价值。

在长期的测量中,他发明了还日光反射仪,可以将光束反射至450公里外的地方。但是要利用日光反射仪进行精确测量就必须解决曲面和投影的理论关系,高斯在这段时间开始了对曲面和投影的理论研究。这方面的研究成果为后来微分几何的创立奠定了基础。在非欧氏几何的研究中,他独自提出和证明欧氏几何的平行公设不具有物理的必然性,由于他担心同时代的人不能理解该理论,最终没有发表。但后来量子力学证明了他的观点的正确性。

高斯在数学上的成就十分广泛,在微分几何、非欧几何、超几何级数、数论以及椭圆函数论等方面均有开创性贡献,并且在天文学、大地测量学和磁学的研究中引入数学方法,取得巨大的成就。1855年2月23日,79岁的高斯在哥廷根逝世。为了纪念他,哥廷根大学的校园里建立了一个正17边形台座的高斯雕像。

❻ 高斯小时候的故事

高斯(Gauss 1777~1855)生于Brunswick,位于现在德国中北部。他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶而会给他一些指导,而父亲可以说是一名“大老粗”,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。

高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道着名的“从一加到一百”,终于发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的能力也比老师高得多,后来成为大学教授,他教了高斯更多更深的数学。

老师和助教去拜访高斯的父亲,要他让高斯接受更高的教育,但高斯的父亲认为儿子应该像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不知道要到哪里找。经过这次的访问,高斯免除了每天晚上织布的工作,每天和Bartels讨论数学,但不久之后,Bartels也没有什么东西可以教高斯了。

1788年高斯不顾父亲的反对进了高等学校。数学老师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。

❼ 高斯的故事

1、高斯是位犹太人,德国着名数学家、物理学家、天文学家、大地测量学家,近代数学奠基者之一。高斯被认为是历史上最重要的数学家之一,并享有“数学王子”之称。

2、高斯三岁时便能够纠正他父亲的借债账目的事情,已经成为一个轶事流传至今。他曾说,他在麦仙翁堆上学会计算。能够在头脑中进行复杂的计算,是上帝赐予他一生的天赋。

3、在成长过程中,幼年的高斯主要得力于他的母亲罗捷雅和舅舅弗利德里希。弗利德里希富有智慧,为人热情而又聪明能干投身于纺织贸易颇有成就。

4、高斯7岁那年开始上学。10岁的时候,他进入了学习数学的班级,这是一个首次创办的班,孩子们在这之前都没有听说过算术这么一门课程。数学教师是布特纳,他对高斯的成长也起了一定作用。

5、1796年高斯19岁,发现了正十七边形的尺规作图法, 解决了自欧几里德以来悬而未决的一个难题。 同年,发表并证明了二次互反律。这是他的得意杰作,一生曾用八种方法证明,称之为“黄金律” 。

6、1799年,高斯完成了博士论文,获黑尔姆施泰特大学的博士学位,回到家乡布伦兹维克,虽然他的博士论文顺利通过了,被授予博士学位,同时获得了讲师职位,但他没有能成功地吸引学生,因此只能回老家-又是公爵伸手救援他。

7、1833年高斯从他的天文台拉了一条长八千尺的电线,跨过许多人家的屋顶,一直到韦伯的实验室,以伏特电池为电源,构造了世界第一个电报机。

8、1837年高斯开始学习俄语。1839年4月18日,他的母亲在哥廷根逝世,享年95岁。高斯于1855年2月23日凌晨1点在哥廷根去世。他的很多散布在给朋友的书信或笔记发现于1898年。

9、高斯具有浓厚的宗教感情、贵族的举止和保守的倾向。他一直远离他那个时代的进步政治潮流。在高斯身上表现出的矛盾是与他实际上的和谐结合在一起的。高斯身为才气横溢的算术家,对于数具有非凡的记忆力。他既是一个深刻的理论家,又是一个杰出的数学实践家。

(7)高斯有哪些故事扩展阅读:

1、高斯已经指出,正三边形、正四边形、正五边形、正十五边形和边数是上述边数两倍的正多边形的几何作图是能够用圆规和直尺实现的,但从那时起关于这个问题的研究没有多大进展。高斯在数论的基础上提出了判断一给定边数的正多边形是否可以几何作图的准则。

2、高斯是最早怀疑欧几里得几何学是自然界和思想中所固有的那些人之一。欧几里得是建立系统性几何学的第一人。他模型中的一些基本思想被称作公理,它们是透过纯粹逻辑构造整个系统的出发点。在这些公理中,平行线公理一开始就显得很突出。

3、高斯具有浓厚的宗教感情、贵族的举止和保守的倾向。他一直远离他那个时代的进步政治潮流。在高斯身上表现出的矛盾是与他实际上的和谐结合在一起的。高斯身为才气横溢的算术家,对于数具有非凡的记忆力。他既是一个深刻的理论家,又是一个杰出的数学实践家。

❽ 关于数学家高斯的故事有哪些

生平事迹
童年时期
高斯是一对普通夫妇的儿子。他的母亲是一个贫穷石匠的女儿,虽然十分聪明 ,但却没有接受过教育,近似于文盲。在她成为高斯父亲的第二个妻子之前,从事女佣工作。他的父亲曾做过园丁,工头,商人的助手和一个小保险公司的评估师。
高斯3岁时便能够纠正他父亲的借债账目的事情,已经成为一个轶事流传至今。他曾说,他在麦仙翁堆上学会计算。能够在头脑中进行复杂的计算,是上帝赐予他一生的天赋。
当高斯9岁时候,高斯用很短的时间计算出了小学老师布置的任务:对自然数从1到100的求和。他所使用的方法是:对50对构造成和101的数列求和为(1+100,2+99,3+98……),同时得到结果:5050。但是据更为精细的数学史书记载,高斯所解的并不止1加到100那么简单,而是81297+81495+......+100899(公差198,项数100)的一个等差数列。
青少年时期
当高斯12岁时,已经开始怀疑元素几何学中的基础证明。当他16岁时,预测在欧氏几何之外必然会产生一门完全不同的几何学。他导出了二项式定理的一般形式,将其成功地运用在无穷级数,并发展了数学分析的理论。
高斯的老师Bruettner与他助手 Martin Bartels 很早就认识到了高斯在数学上异乎寻常的天赋,同时Herzog Carl Wilhelm Ferdinand von Braunschweig也对这个天才儿童留下了深刻印象。于是他们从高斯14岁起,便资助其学习与生活。这也使高斯能够在公元1792-1795年在Carolinum学院(今天Braunschweig学院的前身)学习。18岁时,高斯转入哥廷根大学学习。在他19岁时,第一个成功地用尺规构造出了规则的17角形。
成年时期
高斯于公元1805年10月5日与来自Braunschweig的Johanna Elisabeth Rosina Osthoff小姐(1780-1809)结婚。在公元1806年8月21日迎来了他生命中的第一个孩子约瑟。此后,他又有两个孩子。Wilhelmine(1809-1840)和Louis(1809-1810)。1807年高斯成为哥廷根大学的教授和当地天文台的台长。
虽然高斯作为一个数学家而闻名于世,但这并不意味着他热爱教书。尽管如此,他越来越多的学生成为有影响的数学家,如后来闻名于世的Richard Dedekind和黎曼,黎曼创立了黎曼几何学。
19世纪40年代初期开始,高斯几乎完全退出了物理学的创新研究,只从事例行的天文观测,计算汉诺威测地工作中遗留下的问题,对老的研究课题、发表过的评论或报告作些修饰,解决一些小的数学问题.此后的出版物正反映了他的这种状态.他对E.E.库默尔(Kummer)新创立的理想论(1845)没有强烈的反应,对海王星的发现(1846)亦很漠然.C.G.雅可比(Jacobi)在参加纪念高斯获博士学位50周年大会后说,跟高斯谈数学问题时,他总是把话题叉开而谈些无聊的事.在40年代,高斯对格丁根大学的事务有了较多关注,担任过教授会的负责人;花了几年时间,将大学丧偶者基金会的财务预算奠基于可靠的统计规律之上;他对教学的兴趣也比以前浓厚了.(我们注意到,高斯在大学开的课,大部分是天文学方面的,唯有在当教授的第一年讲过一次数论,他最常讲的课是最小二乘法及其在科学中的应用.) 晚年的高斯在学术圈子以外的人眼里是位科学奇人,而高斯本人却极端热衷于从报纸、书本和日常生活中收集各种统计资料.在1848年革命时期,他几乎每天到学校守旧派成立的文学会(高斯是会员)附属的阅览室寻觅各种数据.如果某个学生正在看的报是他所寻找的,高斯会一直瞪着他直到对方递过来这份报纸.他因而被学生戏称为“阅览室之霸”.据说这一习惯对他从事投资活动(主要是买债券,包括德国以外发行的债券)大有裨益,他身后留下的财产几乎等于其年薪的200倍,说明他是个理财的好手.
高斯生命的最后几年仍保持学者风度,没有间断过阅读和参加力所能及的学术活动:
1850年,心脏病加重,行动受到限制.
1851年7月1日有日蚀,高斯作了他最后一次天文观测.
1851年,核准 G.F.B.黎曼(Riemann)的博士论文,给予高度评价.
1852年,改进傅科摆,解决一些小的数学问题.
1853年,为黎曼选定为获讲师资格需作的答辩题目(几何基础).
1854年1月,全面体检诊断高斯心脏已扩大,将不久于人世.但病情奇迹般地得到缓解.
1854年6月,听了黎曼关于几何基础的答辩报告,出席格丁根到汉诺威间铁路的开通仪式.
1854年8月,病情恶化,下肢水肿.
1855年2月3日清晨,高斯在睡眠中故去.
高斯的葬礼有政府和大学的高级官员出席,他的女婿在悼词中赞扬高斯是难得的、无与伦比的天才.送葬抬棺者中有24岁的J.W.R.戴德金(Dedekind),他曾选修高斯的最小二乘法课.
高斯的大脑有深而多的脑回,作为解剖标本收藏于格丁根大学.
《高斯全集》(Carl Friedrich Gauss'Werke)的出版历时67年(1863—1929),由众多着名数学家参与,最后在 F.克莱因(Klein)指导下完成.全集共分12卷.前7卷基本按学科编辑:第1,2卷,数论;第3卷,分析;第4卷,概率论和几何;第5卷,数学物理;第6,7卷,天文.其他各卷的内容如下:第8卷,算术、分析、概率、天文方面的补遗;第9卷是第6卷的续篇,包括测地学;第10卷分两部分:Ⅰ,算术、代数、分析、几何方面的文章及日记,Ⅱ,其他作家对高斯的数学和力学工作的评论;第11卷也分两部分:Ⅰ,若干物理学、天文学文章,Ⅱ,其他作家对高斯测地学、物理学和天文学工作的评论;第12卷,杂录及《地磁图》.
离世
高斯墓地:高斯非常信教且保守。他的父亲死于1808年4月14日,晚些时候的1809年10月11日,他的第一位妻子Johanna也离开人世。次年8月4日高斯迎娶第二位妻子Friederica Wilhelmine (1788-1831)。他们又有三个孩子:Eugen (1811-1896), Wilhelm (1813-1883) 和 Therese (1816-1864)。 1831年9月12日他的第二位妻子也死去,1837年高斯开始学习俄语。1839年4月18日,他的母亲在哥廷根逝世,享年95岁。高斯于1855年2月23日凌晨1点在哥廷根去世。他的很多散布在给朋友的书信或笔记中的发现于1898年被发现。
高斯的一生是不平凡的一生,几乎在数学的每个领域都有他的足迹,无怪后人常用他的事迹和格言鞭策自己。100多年来,不少有才华的青年在高斯的影响下成长为杰出的数学家,并为人类的文化做出了巨大的贡献。高斯的墓碑朴实无华,仅镌刻“高斯”二字。为纪念高斯,其故乡布伦瑞克改名为高斯堡。哥廷根大学立了一个正十七棱柱为底座的纪念像。在慕尼黑博物馆悬挂的高斯画像上有这样一首题诗:他的思想深入数学、空间、大自然的奥秘,他测量了星星的路径、地球的形状和自然力,他推动了数学的进展,直到下个世纪。

阅读全文

与高斯有哪些故事相关的资料

热点内容
北流市哪个镇经济发展好 浏览:846
普惠地摊经济怎么样 浏览:569
跨国婚姻对方失联怎么办 浏览:548
抖音讲故事的简介怎么写 浏览:217
分手后的祝你幸福代表了什么 浏览:462
中班健康领域反思怎么写 浏览:346
幸福生活怎么炼成的 浏览:512
夫妻如何相处才能幸福长久 浏览:552
上杭事业单位工资待遇怎么样 浏览:725
如何否认婚姻关系 浏览:699
小河小城故事属于哪个学校 浏览:698
亚健康我们应该怎么办 浏览:642
医疗事业编违约赔多少 浏览:211
考疾控事业编考试都考哪些内容 浏览:107
街边小吃最实惠又经济有哪些 浏览:898
本地美女做什么副业好 浏览:195
如何把故事说得有意思 浏览:443
上海经济园区有哪些 浏览:688
走不下去的婚姻怎么挽回 浏览:787
强势婚姻破裂怎么挽回男友 浏览:438