1. 维达定律是什么
你说的应该是韦达定理。
韦达定理说明了一元二次方程中根和系数之间的关系。
法国数学家弗朗索瓦·韦达在着作《论方程的识别与订正》中建立了方程根与系数的关系,提出了这条定理。由于韦达最早发现代数方程的根与系数之间有这种关系,人们把这个关系称为韦达定理。
韦达定理说明了一元n次方程中根和系数之间的关系。法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。
历史是有趣的,韦达在16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理念行却是在1799年才由高斯作出第一个实质性的论证。 韦达定理在方程论中有着广泛的键顷应用。
定理意义
韦达定理在求根的对称函数,讨论二次方程根的符号、解对称方程组以及解一些仔亮哗有关二次曲线的问题都凸显出独特的作用。
一元二次方程的根的判别式为
(a,b,c分别为一元二次方程的二次项系数,一次项系数和常数项)。韦达定理与根的判别式的关系更是密不可分。
根的判别式是判定方程是否有实根的充要条件,韦达定理说明了根与系数的关系。无论方程有无实数根,实系数一元二次方程的根与系数之间适合韦达定理。判别式与韦达定理的结合,则更有效地说明与判定一元二次方程根的状况和特征。
韦达定理最重要的贡献是对代数学的推进,它最早系统地引入代数符号,推进了方程论的发展,用字母代替未知数,指出了根与系数之间的关系。韦达定理为数学中的一元方程的研究奠定了基础,对一元方程的应用创造和开拓了广泛的发展空间。
利用韦达定理可以快速求出两方程根的关系,韦达定理应用广泛,在初等数学、解析几何、平面几何、方程论中均有体现。
2. 韦达定理有什么用啊
韦达定理说明了一元二次方程中根和系数之间的关系,由法国数学家弗朗索瓦·韦达于1615年在其着作《论方程的识别与订正》中提出。
韦达定理的作用很大。在初中数学的学习中,韦达定理及其逆定理的应用是很广泛的。主要有如下的应用仔贺郑:
1. 已知一元二次方程的一根求另一根。
2. 已知一元二次方程的两根,求作新的一元二次方程。拍腊
3. 不解方程,求关于两根的代数式的值。
4. 一元二次方程的验根。
5. 解一类特殊的二元二次方程组和通念颂过换元等方法求解二次根式方程。
6. 与判别式的综合应用。
3. 维达定理是什么
韦达定理 法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。历史是有趣的,韦达的16世纪就得出这个氏纯唤定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。 由代数基本定理可推得:任何一元 n 次方程 在复数集中必有根。因此,该方程的左端可以在复数范围内分解成一次因式的乘积: 其中是该方程的个根。两端比较系数即得韦达定理。 韦达定理 AX2+BX+C=0 X1和X2为方程的两个跟 则X1+X2=-B/A X1*X2=C/A 韦达定理应用中的一个技巧 在解有关一元二次方程整数根问题时,若将韦达定理与分解式αβ±(α+β)+1=(α±1)(β±1)结合起来,往往解法新颖、巧妙、别具一格.例说如歼凯下. 例1 已知p+q=198,求方程x2+px+q=0的整数根. (’94祖冲之杯数学邀请赛试题) 解:设方程的两整数根为x1、x2,不妨设x1≤x2.由韦达定理,得 x1+x2=-p,x1x2=q. 于是x1x2-(x1+x2)=p+q=198, 即x1x2-x1-x2+1=199. ∴(x1-1)(x2-1)=199. 注意到x1-1、x2-1均为整数, 解得x1=2,裤枝x2=200;x1=-198,x2=0. 例2 已知关于x的方程x2-(12-m)x+m-1=0的两个根都是正整数,求m的值. 解:设方程的两个正整数根为x1、x2,且不妨设x1≤x2.由韦达定理得 x1+x2=12-m,x1x2=m-1. 于是x1x2+x1+x2=11, 即(x1+1)(x2+1)=12. ∵x1、x2为正整数, 解得x1=1,x2=5;x1=2,x2=3. 故有m=6或7. 例3 求实数k,使得方程kx2+(k+1)x+(k-1)=0的根都是整数. 解:若k=0,得x=1,即k=0符合要求. 若k≠0,设二次方程的两个整数根为x1、x2,由韦达定理得 ∴x1x2-x1-x2=2, (x1-1)(x2-1)=3. 因为x1-1、x2-1均为整数,所以 例4 已知二次函数y=-x2+px+q的图像与x轴交于(α,0)、(β,0)两点,且α>1>β,求证:p+q>1. (97四川省初中数学竞赛试题) 证明:由题意,可知方程-x2+px+q=0的两根为α、β.由韦达定理得 α+β=p,αβ=-q. 于是p+q=α+β-αβ, =-(αβ-α-β+1)+1 =-(α-1)(β-1)+1>1(因α>1>β).
比较全了吧
4. 韦达定理是什么(公式)说得详细点
韦达定理:
设一元二次方程中,两根x₁、x₂有如下关系:
(4)韦达定理在爱情里代表什么扩展阅读:
韦达定理的意义:
根的判别式是判定方程是否有实根的充要条件链袜晌,韦达定理说明了根与系数的关系。
无论方程有无实数根,实系数一元二次棚锋方程的根与系数之间适合韦达定理。
判别式与韦达定理的结合,则更有效地说明与判定一元二次方程根的状况和特征。
韦达定理最重要的贡献是对代数学的推进好局,它最早系统地引入代数符号,推进了方程论的发展,用字母代替未知数,指出了根与系数之间的关系。
韦达定理为数学中的一元方程的研究奠定了基础。
5. 韦达定理是什么意思
韦达正岁定理的意思:指一元二次方程根和系数之间的关系。
韦达定理在求根的对称函数,讨论一元二次方程根的符号,解对称方程组,以及解一些与圆锥曲线相关的问题时氏斗。
“对称型韦达定理”题型可以理解为可以刚好利用韦达定理的式子整体代入,进而转化,化简求解。“非对称型韦达定理”题型可以理解为不可以直接利用韦达定理代入一定要进行处理才可以化简,或者理解为两根,x不是轮换对称的。此种题型大部分是证明定值问题。
韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。韦达在16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。
韦达定理的应用韦达定理的在初中学完一元二次方程后将贯穿整个中学时代,从一元二次方程到二次函数,再到高中的椭圆、双曲线、抛物线方举核睁程,都将与其息息相关,可以说是解题的必备利器。
6. 什么是韦达定理
根与系数的关系,又称韦达定理。
所谓的韦达定理是指槐含一元二次方程根和系数之间的关系。
一个一元二次方程的根可由铅早笑求根公式求出,公式是含各项系数的代数式。因此一元二次方程的的根与各项系数之间一定存在着某种数量上的关系。
(6)韦达定理在爱情里代表什么扩展阅读:
韦达介绍
韦达全名叫弗朗索瓦·韦达(FrançoisViète,1540~1603),是一位法国杰出数学家。
他是历史上第一个系统地用字母来表示已知数、未知数及其乘幂的数学家,此举给代数理论研究带来了巨大便利。试想一下没有这些字母表示,纯粹靠文字叙述这些表达式该是多么令人糟心!
当然,他最为中学生所熟悉的工作就是讨论了方程根的多种有理变换,发现了方程根与系数的关系——韦达定理,因此在欧洲被尊称为“代数学之父”。