① 大数据和人工智能技术在健康产业有哪些具体应用请举例说明,谢谢!
大健康产业顺应了中国经济转型升级、绿色发展的趋势,全球医疗健康产业投融资金额最多集中在2021年,全年达到6846.03亿元,投融资数量最多在2019年,达2044起。大数据和人工智能技术赋能多个大健康产业领域,包括公共卫生大数据、疾病快速诊断、远程医疗、识别诊断、药物研发、康复治疗等
在数字健康产业供应链,智慧眼一方面“深挖洞”,纵向深耕数字健康产业,形成自主可控、安全可靠的AI核心技术;另一方面是“广积粮”,横向扩展健康产业多元化市场应用场景,帮助政府、医院、群众乃至整个产业界激发数字化力量。
AI+社会保障
基于大数据+人脸识别技术的养老金待遇资格认证系统应用于全国社保二十余个省份的省级平台,解决了养老金防冒领的世界难题,保障社保基金安全,稳定社会大局。
AI+医疗保障
基于大数据+生物识别技术的医保智能场景监控系统已应用于全国近二十个省级医保平台,实现了门诊、住院、购药、血透、健康理疗等场景的智能监控,防范医保欺诈骗保行为,确保医保基金安全。
AI+血透管理
遵循医院血液透析中心临床业务流程,从患者管理、透析日程准备、患者治疗排班、临床辅助决策等不同环节对血液透析治疗进行智能管理和监控。以患者为核心,从根本上改变诊疗信息的采集处理、分析查询和传输方式,为医护人员提供智能化工作方式,辅助医生制定更加人性、优质的治疗决策,提高科室工作质量和院内服务水平,提升患者满意度,做到医疗行为溯源全记录,保障医疗质量和医疗安全。
AI+慢病管理
依托智慧眼云慢病管理系统,门诊慢病患者可在就诊医生处便捷化生成健康管理档案,通过机器学习和医学知识图谱数据库,智能化形成疾病管理目标,帮助医生快速掌握患者信息,指导开药和开展疾病管理,形成以患者为中心的数字化病程管理体系,实现诊前导诊、疾病预判,诊后用药提醒等闭环服务,助力医疗健康行业的持续发展。
AI+健康乡村
以健康乡村综合服务平台&智能终端为载体,将大医院的优质资源通过平台与基层卫生室进行互联,提高基层卫生室的首诊能力和水平,帮助基层的医生在诊断方面有更大的把握和信心,让村民“足不出村”就能享受到便捷的健康服务,助力国家乡村振兴战略落地。
② 大数据医疗行业有哪些应用
一、电子病历
到目前为止,大数据最强大的应用就是电子医疗记录的收集。每一个病人都有自己的电子记录,包括个人病史、家族病史、过敏症以及所有医疗检测结果等。
二、健康监控
医疗业的另一个创新是“可穿戴设备”的应用,这些设备能够实时汇报病人的健康状况。和医院内部分析医疗数据的软件类似,这些新的分析设备具备同样的功能,但能在医疗机构之外的场所使用,降低了医疗成本,病人在家就能获知自己的健康状况,同时还获得智能设备所提供的治疗建议。这些可穿戴设备持续不断地收集健康数据并存储在云端。
三、医护资源配置
这个看似不可能完成的任务,已经在大数据的帮助帮助下在一些“试点”单位实现。在法国巴黎,有四家医院通过多个来源的数据预测每家医院每天和每小时的患者数量。
四、大数据与人工智能
人工智能技术通过算法和软件,分析复杂的医疗数据,达到近似人类认知的目的。因此AI使得计算机算法能够在没有直接人为输入的情况下预估结论成为可能。由AI支持的脑机接口可以帮助恢复基本的人类体验,例如因神经系统疾病和神经系统创伤而丧失的说话和沟通功能。
③ 大数据在医疗行业的应用有哪些
大数据专业属于交叉学科:以统计学、数学、计算机为三大支撑性学科;生物、医学、环境科学、经济学、社会学、管理学为应用拓展性学科。所以大数据在众多行业都有应用,下面说说其在医疗领域的应用。
随着互联网规模不断的扩大,大数据正在改变着这个时代的绝大一部分的行业或者企业,医疗行业也不例外,医疗健康正在成为人们关注的重点问题,以智能化、数字化为特征的医疗信息化正在蓬勃兴起,医疗行业的数据类型也在向海量、复杂、多样的类型方式转变。
1.就医数据进行电子化管理
对电子医疗记录的收集,包括个人病史、家族病史、过敏症以及所有医疗检测结果等。在信息系统中进行分享,每一个医生都能够在系统中添加或变更记录,而无需再通过耗时的纸质工作来完成。这些记录同时也能帮助病人掌握自己的用药情况,同时也是医学研究的重要数据参考。
2.健康预测
通过智能手表等可穿戴设备的数据,建立健康预测模型,通过这些可穿戴设备持续不断地收集健康数据并存储在云端,实时汇报病人的健康状况。应用于数百万人及其各种疾病的预测和分析,并且在未来的临床试验将不再局限于小样本,而是包括所有人。
3.医学影像以及临床诊断
通过让大数据机器人来识别记住各类海量的医学影像,例如X射线、核磁共振成像、超声波……等各种的图像。对大量病历进行深度挖掘与学习,训练其对影片的诊断,最终实现辅助医生进行临床决策,规范诊疗路径,提高医生的工作效率。
4.药品研发
利用大数据进行数据建模并进行分析,预测药物的临床结果,可以为临床阶段的实验结果提供参考,节省临床阶段的时间并优化临床实验结果。制药公司也可以通过数据建模进行分析,从而生产出治疗成功率更高的药品并极大地缩短药品从研发到投入市场的时间。