❶ 经济学里的博弈论基本知识点有哪些
经济博弈论是指将博弈论知识用于经济问题的分析之中,如针对经济问题的种类、结构,构建出相应的数学博弈模型,用于描述、反映经济问题参与人的策略选择动机,以便寻找到己方的问题最优解(其实也是其他利益主体的最优解)。上述新老两个厂商争夺产品市场的例子就属于经济博弈范畴。在市场经济中,企业之间、企业与消费者之间、企业与政府之间、政府与消费者之间、政府与纳税人之间的相互影响、相互依存和相互制约不断加强,以这些经济主体间的对抗、依赖和制约为研究前提和出发点的博弈论研究更具有现实意义。例如,近一两年来,国家为了防范经济过热,央行适当调高了贷款利率,其目的是遏制各地过猛过热的项目建设。面对这一财政政策,各地企业,尤其是那些有当地政府支持的大中型企业,所选择的策略无非是与央行合作,减缩当前的投入,停止大型项目的审批;另一种策略就是,为了发展地方经济,维系其一己私利,置全国一盘棋的整体利益于不顾,大中型企业间暗自串通,继续上马新项目,妄图影响或架空中央的财政政策。于是,形成了政府与地方大中型企业之间的博弈,如何协调,如何处理,仁者见仁,智者见智。因此,无论在社会经济宏观层面,还是涉及到个人、经济组织的微观层面,博弈论的功用都是显而易见的。更为重要的是,通过对博弈论的学习,使我们在分析经济现象和协调经济利益时,能够学着以战略的思维来统领我们的原则;以谋略的方式来做出我们的选择。随着我们进一步系统掌握博弈论的基本原理和方法,定能使我们在未来对抗性更强,竞争更激烈的市场活动中,思路更开阔,决策错误更少,活动效率更高,成功机会。
❷ 经济学的博弈指什么>
博弈论主要研究公式化了的激励结构间的相互作用,是研究具有斗争或竞争性质现象的数学理论和方法。 博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。生物学家使用博弈理论来理解和预测进化论的某些结果。
博弈论已经成为经济学的标准分析工具之一。
博弈论是二人在平等的对局中各自利用对方的策略变换自己的对抗策略,达到取胜的目的。博弈论思想古已有之,中国古代的《孙子兵法》等着作就不仅是一部军事着作,而且算是最早的一部博弈论着作。
博弈论最初主要研究象棋、桥牌、赌博中的胜负问题,人们对博弈局势的把握只停留在经验上,没有向理论化发展。
(2)经济博弈怎么取舍扩展阅读:
要素
1、局中人:在一场竞赛或博弈中,每一个有决策权的参与者成为一个局中人。只有两个局中人的博弈现象称为“两人博弈”,而多于两个局中人的博弈称为 “多人博弈”。
2、策略:一局博弈中,每个局中人都有选择实际可行的完整的行动方案,即方案不是某阶段的行动方案,而是指导整个行动的一个方案,一个局中人的一个可行的自始至终全局筹划的一个行动方案,称为这个局中人的一个策略。
如果在一个博弈中局中人都总共有有限个策略,则称为“有限博弈”,否则称为“无限博弈”。
3、得失:一局博弈结局时的结果称为得失。每个局中人在一局博弈结束时的得失,不仅与该局中人自身所选择的策略有关,而且与全局中人所取定的一组策略有关。所以,一局博弈结束时每个局中人的“得失”是全体局中人所取定的一组策略的函数,通常称为支付(payoff)函数。
4、对于博弈参与者来说,存在着一博弈结果 。
5、博弈涉及到均衡:均衡是平衡的意思,在经济学中,均衡意即相关量处于稳定值。在供求关系中,某一商品市场如果在某一价格下,想以此价格买此商品的人均能买到,而想卖的人均能卖出,此时我们就说,该商品的供求达到了均衡。所谓纳什均衡,它是一稳定的博弈结果。
❸ 经济博弈论有哪几种分类每种分类都对应些什么策略
博弈论是指某个个人或是组织,面对一定的环境条件,在一定的规则约束下,依靠所掌握的信息,从各自选择的行为或是策略进行选择并加以实施,并从各自取得相应结果或收益的过程,在经济学上博奕论是个非常重要的理论概念。现代经济学流派主要分两大类:理论经济学和实证经济学。前者的核心工具就是博弈论的分析方法,后者核心工具就是计量模型。到了80年代,博弈论已经渗透到经济学的各领域。
什么是博弈论?古语有云,世事如棋。生活中每个人如同棋手,其每一个行为如同在一张看不见的棋盘上布一个子,精明慎重的棋手们相互揣摩、相互牵制,人人争赢,下出诸多精彩纷呈、变化多端的棋局。博弈论是研究棋手们 “出棋” 着数中理性化、逻辑化的部分,并将其系统化为一门科学。换句话说,就是研究个体如何在错综复杂的相互影响中得出最合理的策略。事实上,博弈论正是衍生于古老的游戏或曰博弈如象棋、扑克等。数学家们将具体的问题抽象化,通过建立自完备的逻辑框架、体系研究其规律及变化。这可不是件容易的事情,以最简单的二人对弈为例,稍想一下便知此中大有玄妙:若假设双方都精确地记得自己和对手的每一步棋且都是最“理性” 的棋手,甲出子的时候,为了赢棋,得仔细考虑乙的想法,而乙出子时也得考虑甲的想法,所以甲还得想到乙在想他的想法,乙当然也知道甲想到了他在想甲的想法…
面对如许重重迷雾,博弈论怎样着手分析解决问题,怎样对作为现实归纳的抽象数学问题求出最优解、从而为在理论上指导实践提供可能性呢?现代博弈理论由匈牙利大数学家冯·诺伊曼于20世纪20年代开始创立,1944年他与经济学家奥斯卡·摩根斯特恩合作出版的巨着《博弈论与经济行为》,标志着现代系统博弈理论的初步形成。对于非合作、纯竞争型博弈,诺伊曼所解决的只有二人零和博弈--好比两个人下棋、或是打乒乓球,一个人赢一着则另一个人必输一着,净获利为零。在这里抽象化后的博弈问题是,已知参与者集合(两方) ,策略集合(所有棋着) ,和盈利集合(赢子输子) ,能否且如何找到一个理论上的“解” 或“平衡” ,也就是对参与双方来说都最“合理” 、最优的具体策略?怎样才是“合理” ?应用传统决定论中的“最小最大” 准则,即博弈的每一方都假设对方的所有功略的根本目的是使自己最大程度地失利,并据此最优化自己的对策,诺伊曼从数学上证明,通过一定的线性运算,对于每一个二人零和博弈,都能够找到一个“最小最大解” 。通过一定的线性运算,竞争双方以概率分布的形式随机使用某套最优策略中的各个步骤,就可以最终达到彼此盈利最大且相当。当然,其隐含的意义在于,这套最优策略并不依赖于对手在博弈中的操作。用通俗的话说,这个着名的最小最大定理所体现的基本“理性” 思想是“抱最好的希望,做最坏的打算” 。
虽然二人零和博弈的解决具有重大的意义,但作为一个理论来说,它应用于实践的范围是极其有限的。不提耽于游戏的玩家,可以说除了军事竞争,几乎难再有用武之地。二人零和博弈主要的局限性有二,一是在各种社会活动中,常常有多方参与而不是只有两方;二是参与各方相互作用的结果并不一定有人得利就有人失利,整个群体可能具有大于零或小于零的净获利。对于后者,让我们来看一个历史上最经典的有趣个例: “囚徒困境” 。话说警方抓到两个盗窃犯,惜证据尚不足,遂寄希望于嫌犯自己招供。警方把两个犯人隔离起来,分别审问,交代政策如下:坦白从宽,抗拒从严!如果你招了,另一个人没招,那么就将你释放,另一人判20年;同样如果你不招,另一个人招了,那么你得被判20年,另一个人被释放。如果两个人都招,警方证据就足了,两人都判10年。至于两个人都不招的情况,不用警方交代,两个人都得判,但因证据不力,判得都要轻许多,比如1年。警方最后说,那边还有个警察,对你的同伙交代一模一样的政策呢。罪犯心里打起小九九,如果对方招了,我招是10年,不招是20年,是招划算;如果对方不招,我招是无罪释放,不招是1年,还是招划算。于是乎,招!两个“精明” 的小偷都招了,都被判了10年,正中警方下怀。聪明的读者,其实如果两个小偷都不招,就会被各判1年,对他们来说岂不更好?在这个囚徒困境问题中,参与者仍是两名(两个盗窃犯) ,但这不再是一个零和的博弈,人受损并不等于我收益。两个小偷可能一共被判20年,或一共只被判2年。
对于多人参与、非零和的博弈问题,在纳什之前,无人知道如何求解,或者说怎样找到类似于最小最大解那样的“平衡” 。而找不到解,下面的研究当然无法进行,更谈不上指导实践了。纳什对博弈论的巨大贡献,正在于他天才性地提出了“纳什均衡” 的基本概念,为更加普遍广泛的博弈问题找到了解。纳什均衡的基本思想是,在这个解集中所有参与者的策略都是对其他参与者所用策略的最佳对策,没有人能够通过单单改变自己的策略提高收益。以前面的囚徒困境为例,如果小偷甲相信小偷乙招供,那么他的最佳策略是招供,而如果小偷乙相信小偷甲招供,那么他的最佳策略仍是招供。这就是一个纳什均衡,它是“自确定” 的。在囚徒困境中,只存在一个纳什均衡。但若将条件改变一下,在许多其它的具体问题中,纳什均衡可能不止一个。纳什巧妙地运用数学技巧,证明了如下纳什定理:对于任何一个n人参与,非合作博弈(零和或非零和) ,如果每个参与者都只有有限条策略,那么一定存在至少一个纳什均衡解集。象许多科学上最杰出的思想一样,这一概念以极简洁明了的方式解决了悬而未解的难题。