❶ 计量经济学中,关于“线性”概念的阐述,谁可以帮帮我啊,谢谢了
计量紧急学中,线性有两层含义,第一层是数学中的Y与X的线性关系
第二层是Y与b0 b1之间的线性关系
在计量中,一般以第二种为准
即y对b0的一阶求导为0,对b1的一阶求导为1,对b1的二阶求导为0.。
经常会有些关于怎么把某些函数划为线性的,即第二种的定义
❷ 再谈关于计量经济学中x是不是随机变量的问题
我给你一个明确的答复,计量经济学的两个模型,一个是随机模型,一个是理论方程,区别在于一个有随机扰动项,一个没有。
没有随机项的,是指总体回归方程。由于是建立的相关关系,从而是随机变量。
有扰动项的方程是用来估计的样本回归方程,这时x是观测值,是由自然实验得到的已经既定的数值,显然不是随机变量。也正是因为这样,在强假定下,样本统计量的矩估计是无偏一致估计。
❸ 计量经济学中怎么确定参数的标准差
A,理论模型的设计: a,选择变量b,确定变量关系c,拟定参数范围
B,样本数据的收集: a,数据的类型b,数据的质量
C,样本参数的估计: a,模型的识别b,估价方法选择
D,模型的检验
a,经济意义的检验:1、正相关;2、反相关等等
b,统计检验:1、检验样本回归函数和样本的拟合优度;2、样本回归函数和总体回归函数的接近程度:单个解释变量显着性即t检验,函数显着性即F检验,接近程度的区间检验
c,模型预测检验:1、解释变量条件条件均值与个值的预测测; 2、预测置信空间变化
d,参数的线性约束检验:1、参数线性约束的检验;2、模型增加或减少变量的检验;3、参数的稳定性检验:邹氏参数稳定性检验,邹氏预测检验(主要方法是以F检验受约束前后模型的差异)
e,参数的非线性约束检验:1、最大似然比检验; 2、沃尔德检验;3、拉格朗日乘数检验(主要方法使用F 分布检验统计量分布特征)
f,计量经济学检验
1,异方差性问题:特征:无偏,一致但标准差偏误。检测方法:图示法,Park与Gleiser检验法,Goldfeld-Quandt检验法,White检验法-------用WLS修正异方差
2,序列相关性问题:特征:无偏,一致,但检验不可靠,预测无效。检测方法:图示法,回归检验法,Durbin-Waston检验法,Lagrange乘子检验法-------用GLS或广义差分法修正序列相关性
3,多重共线性问题:特征:无偏,一致但标准差过大,t减小,正负号混乱。检测方法:先检验多重共线性是否存在,再检验多重共线性的范围-------------用逐步回归法,差分法或使用额外信息,增大样本容量可以修正。
4,随机解释变量问题:随机解释变量与随机干扰项独立,对OLS没有坏影响。随机变量与随机干扰项同期相关:有偏但一致,扩大样本容量可以克服。随机变量与随机干扰项同期相关:有偏且非一致,工具变量法可以克服
二、参数估计与模型
参数估计量性质的分析:
a小样本和大样本性质
b无偏性
c有效性
d一致性
e Gauss-Markov定理
A、虚拟解释变量问题
a,加法方式:定性因素对截距的影响
b,乘法方式:定性因素对斜率项产生的影响
c,加法与乘法结合方式:定性应诉对截距和斜率项同时产生影响
B、滞后变量问题
a,分布滞后模型:经验加权法,Almon多项式法,Koyck方法---来减少滞后项的数目
b,自回归模型:工具变量法,OLS法
C、模型设定偏误问题
a,解释变量选取偏误:1、漏选相关变量:OLS在小样本下有偏,大样本下不一致,2、多选无关变量:OLS估计量无偏且一致,但无效
b,模型函数形式选取偏误:OLS有偏非一致且无效
c,1、用t检验和f检验检验无关变量;2、用RESET检验是否遗漏相关变量或模型函数选取错误
联立方程计量经济学模型的单方程估计
a,工具变量法IV
b,ILS-----ab适用于恰好识别
c,2SLS---适用于恰好识别和过度识别
二元离散选择模型
a,Probit离散选择模型:将随机干扰项的概率分布设定为标准正态分布,用最大似然估计法或GLS
b,Logit离散选择模型:将随机干扰项的概率分布设定为logistic分布得到---用最大似然估计法或GLS
随机时间序列模型:
a,纯自回归AR模型----用Yule-Walker方程或OLS估计
b,纯移动平均MA模型
c,自回归移动平均ARMA模型----bc可以用矩估计法,对非平稳的时间序列检验协整性可用Engle-Granger两步法或直接估计法。
三、名词解释
1、计量经济学: 是经济学的一个分支学科,是已揭示经济活动中的客观存在的数量关系为内容的分支学科。
2.计量经济学模型成功的三要素:理论、方法和数据。
3.建立计量经济学模型的步骤:(1)理论模型的设计(2)样本数据的收集(3)模型参数的估计(4)模型的检验。
4.最小二乘原理:样本回归线上的点Yi(上有盖)与真实观测点Yi之查可正可负,简单求和可能将很大的误差抵消掉,只有平方和才能反映二者在总体上的接近程度,这就是最小二乘原理。
5.最小二乘估计量的性质:(1)线形性(2)无偏性(3)有效性(4)渐近无偏性(5)一致性(6)渐进有效性。Yi=E(Y Xi)+Ui或Yi=Bo+B1Xi+Ui即给定可支配收入水平Xi,个别家庭的消费支出可表示为两部分之和:(1)该收入水平下所有家庭的平均消费支出E(Y Xi),称为系统性部分或确定性部分:(2)其他随机部分或非系统部分Ui,
6.总体回归模型:Yi=E(Y Xi)+Ui或Yi=Bo+B1Xi+Ui式称为总体回归函数的随机设定形式,它表明被解释变量Y除了受解释变量X的系统性影响外,还受其他未包括在模型中的诸多因素的随机性影响,U即为这些影响因素的综合代表。由于方程中引入了随机干扰项,成为计量经济学模型,因此也称为总体回归模型。
7.总体回归函数:在给定解释变量Xi条件下被解释变量Yi的期望轨迹称为总体回归线,或更一般地称为总体回归曲线,相应的函数E(Y Xi)=f(Xi)称为(双变量)总体回归函数。
8.总体回归函数的随机设定形式:Yi=E(Y Xi)+Ui或Yi=Bo+B1Xi+Ui式称为总体回归函数的随机设定形式,即给定可支配收入水平Xi,个别家庭的消费支出可表示为两部分之和:(1)该收入水平下所有家庭的平均消费支出E(Y Xi),称为系统性部分或确定性部分:(2)其他随机部分或非系统部分Ui。
9.样本回归函数:样本散点图近似于一条直线,画一条直线尽可能地拟合该散点图,由于样本取自总体,可用该线近似地代表总体回归线,该线称为样本回归线,其函数形式记为Yi(上有盖)=f(Xi)=Bo(上有盖)+B1(上有盖)Xi称为样本回归函数。
10.样本回归模型:样本回归函数也有如下的随机形式:Yi=Yi(上有盖)+Ui(上有盖)=Bo(上有盖)+B1(上有盖)Xi+ei,其中ei称为(样本)残差(或剩余)项,代表了其他影响Yi的随机因素的集合,可看成是Ui的估计量Ui(上有盖),由于方程中引入了随机项,成为计量经济学模型,因此也称为样本回归模型。
11.最小样本容量:即从最小二乘原理和最大似然原理出发,欲得到参数估计量,不管其质量如何,所要求的样本容量的下限。
12.异方差性:对于不同的样本点,随机干扰项的方差不再是常数,而是互不相同,则认为出现了异方差性。
13.异方差性的后果:(1)参数估计量非有效(2)变量的显着性检验失去意义(3)模型的预测失效
14.异方差性的检验方法:(1)图示检验法(2)帕克检验和戈里瑟检验(3)G-Q检验(4)怀特检验。
15.异方差性的修正:最常用的方法是加权最小二乘法,即对原模型加权,使之变成一个新的不存在异方差的模型,然后采用OLS法估计其参数。
16.序列相关性:多元线形回归模型的基本假设之一是模型的随机干扰项相互独立或不相关。如果模型的随机干扰项违背了相互独立的基本假设,称为存在序列相关性。
17.序列相关性的后果:(1)参数估计量非有效(2)变量的显着性检验失去意义(3)模型的预测失败。
18.序列相关性的检验方法:(1)图示法(2)回归检验法(3)杜宾—瓦森检验法 (4)拉格朗日乘法检验。
19.序列相关性的补救:(1)广义最小二乘法(2)广义差分法(3)随机干扰项相关系数的估计(4)广义差分法在计量经济学软件中的实现。
20.多重共线性:(1)对于模型Yi=Bo+B1X1i+B2X2i+...+BkXki+Ui, i=1,2,...,n 其基本假设之一是解释变量X1,X2,...,Xk是相互独立的。如果某两个或多个解释变量之间出现了相关性,则称为存在多重共线性。 21.多重共线性的后果:(1)完全共线性下参数估计量不存在(2)近似共线性下普通最小二乘法参数估计量的方差变大(3)参数估计量经济含义不合理(4)变量的显着性检验和模型的预测功能失去意义。
22.多重共线性的检验:(1)检验多重共线性是否存在(2)判明存在多重共线性的范围。
23.克服多重共线性的方法:(1)排出引起共线性的变量(2)差分法(3)减小参数估计量的方差。
24.随机解释变量的克服方法:模型中出现随机解释变量并且与随机干扰项相关时,普通最小二乘法计量是由偏的。如果随机解释变量与随机干扰项异期相关,则可以通过增大样本容量的办法来得到一致的估计量;但如果是同期相关,即使增大样本容量也无济于事。这时最常用的估计方法是工具变量法。
25.工具变量法:(1)工具变量的选取(2)工具变量的应用(3)工具变量法估计量是一致估计量。
26.虚拟变量:许多经济变量是可以定量度量的,为了在模型中反映对模型的影响因素,并提高模型的精度,需要将它们“量化”,这种“量化”是通过引入“虚拟变量”来完成的。根据这些因素的属性类型,构造只取“0”或“1”的人工变量,通常称为虚拟变量。
27.单方程计量经济学模型与联立计量经济学模型的区别:单方程计量经济学模型是用单一方程来揭示经济变量之间的单项因果的数量关系,适用于单一经济现象的研究。联立计量经济学模型是用一组方程来揭示经济变量之间的相互依存,相互因果的数量关系,适用于某一经济系统的研究。
28.变量:对于联立方程计量经济学模型系统而言,将变量分为内生变量和外生变量两大类,外生变量与滞后内生变量又被统称为先决变量。
29.内生变量:是具有某种概率分布的随机变量,它的参数是联立方程系统估计的元素,内生变量是由模型决定的,同时也对模型系统产生影响。内生变量一般都是经济变量。
30.外生变量:一般是确定性变量,或是具有临界概率分布的随机变量,其参数不是模型系统研究的元素。外生变量影响系统,但本身不受系统的影响。外生便量一般是经济变量、条件变量、政策变量、虚变量。
31.先决变量:外生变量与滞后内生变量统称为先决变量。
32.结构是模型:根据经济理论和行为规律建立的描述经济变量之间直接关系结构的计量经济学方程系统统称为结构式模型。
33.简化式模型:将联立方程计量经济学模型的每个内生变量表示成所有先决变量和随机干扰项的函数,即用所有先决变量作为每个内生变量的解释变量,所形成的模型称为简化式模型。
34.联立方程计量经济学模型的估计方法:分为两大类,单方程估计方法和系统估计方法。所谓单方程估计方法,指每次只估计模型系统中的一个方程,依次逐个估计;所谓系统估计方法,指同时对全部方程进行估计,同时得到所有方程的参数估计量。单方程估计方法称为有限信息估计方法,按方法原理可分为(1)间接最小二乘法(2)两阶段最小二乘法(3)工具变量法(4)有限信息最大似然法(5)最小方差比方法;系统估计方法称为完全信息估计方法,主要包括三阶段最小二乘法和完全信息最大似然法。
❹ 计量经济学中x与y到底哪个是回归元与回归子呀
Y是回归子,X是回归元。
❺ 计量经济学大写的Y与y和X和x分别代表什么意思
从等号右边的表达式很容易知道符号的意义,用作离差平方和及离差积和的简单记号。x的离差平方和记作Sxx、y的离差平方和记作Syy,x和y的离差积和记作Sxy。
x对y有影响,表现为X各滞后项前的参数整体不为零,而Y各滞后项前的参数整体为零。
格兰杰检验是通过受约束的F检验完成的。原假设前参数整体为零。
题中F值很大,F分布表中最大的也就6106,在1%的显着性水平下。所以可以肯定的说拒绝原假设,所以X2i和X3i对YI的联合影响是显着的,F的p值很小,其表示的是接受原假设的概率为零,所以百分百拒绝原假设,故影响是显着的。另外题中没有说F值是检验单个的,所以AB肯定是错的。
(5)计量经济学中如何确定y和x扩展阅读 :
离差平方和的样本计算
一般用计算机计算。以excel为例:
先用Varp计算总体方差,然后求出离差平方和
通过对离差平方和的分解进行方差分析。统计学的实践表明,于某一特性量经过多次试验的结果,一 般不会是同一数值, 是彼此有差异,这种差异反映了这试验受各种条件( 称为因素) 制约。
离差平方和就反映了这种制约因素引起的差异大小,为解决此问题,英国统计学家Fisher提 出了方差分析的方法,基本思想是将总的离差平方和分解为几个部分, 每一部分反映了方差的一种来源, 然后利用F分布进行检验。
❻ 计量经济学 消费品购买力和 居民货币收入哪个是x
X一般是居民家庭收入
Y是居民消费支出
居民收入是指居民收入水平是直接影响市场容量大小的重要因素。居民收入水平一方面受制于宏观经济状况的影响,另一方面受国家收入分配政策、消费政策的影响。居民收入水平直接决定消费者购买力水平,收入水平高,则购买力强,反之则弱。
❼ 内生性解释与工具变量法操作
y为被解释变量,x1为自变量,或者解释变量,也即“因变量”。大写的 X 为外生控制项向量( 也即一组假定为外生的其他控制变量,例如年龄、性别等等) ,ε则为误差项。如果ε与x1不相关,那么我们可以利用OLS 模型对方程进行无偏估计。然而,如果一个重要变量x2被模型遗漏了,且x1和x2也相关,那么对β1的OLS 估计值就必然是有偏的。此时,x1被称作“内生”的解释变量,这就是 “内生性”问题。
如果存在内生性,则称解释变量为 “内生变量”(endogenous variable);反之,则称为 “外生变量”(exogenous variable)。内生性的严重后果是使得 OLS估计量不一致(inconsistent),即无论样本容量多大,OLS 估计量也不会收敛至真实的参数值 。
在计量经济学中,把所有与扰动项相关的解释变量都称为“内生变量”。这与一般经济学理论中的定义有所不同。1.与误差项相关的变量称为内生变量(endogenous variable)。2.与误差项不相关的变量称为外生变量(exogenous variable)。
即X影响Y,但Y也同时影响X。
例如:创业与幸福的关系:到底是创业者更幸福还是幸福的人更愿意去创业
若在模型设定中,某些不可观测的变量或重要变量被忽略,但它同时影响X与Y,也会导致内生性问题,即产生了因忽略变量导致的内生性问题。
例如:“吃冰激凌”会导致“溺亡”?
x是“吃冰激凌”人数,y是“溺亡”人数。如果把二者进行回归会发现高度的显着性。显然,“吃冰激凌”是不会导致“溺亡”。这种估计的偏误主要是模型中遗漏了一个重要的因素,那就是温度。温度升高时,游泳的人数会变多且溺亡人数上升,同时吃冰激凌的人也增多。也就是说温度是共同影响“吃冰激凌人数”与“溺亡人数”的重要变量,如果模型在中遗漏温度变量,则导致结果出现严重的偏误。
解释变量X的测量误差与X相关,该测量误差又被合并到误差项中。因此,X具有内生性问题。
工具变量的思想其实很简单。虽然内生变量是 “坏” 的变量(与扰动项相关),但仍可能有 “好” 的部分(与扰动项不相关的部分),正如坏人通常也有好的一面。如果能将内生变量分解为内生部分与外生部分之和,则可能使用其外生部分得到一致估计。
而要实现这种分离,通常需要借助另一变量,即 “工具变量”(Instrumental Variable,简记 IV),因为它起着工具性的作用。
工具变量要与扰动项不相关,也被称为“排他性约束或工具变量的效度( validity)。工具变量要能够帮助内生变量分离出一个外生部分,则工具变量自身必须是 “干净”的,即满足 “外生性”( 与扰动项不相关)。这里的外生性意味着工具变量影响被解释变量的唯一渠道是通过与其相关的内生解释变量,它排除了所有其他的可能影响渠道。
工具变量要与内生解释变量高度相关,即工具变量影响内生解释变量的力度( powerful condition要大。也就是说,Cov(X,Z)要大。
所谓“内生性检验”说的是你的模型中是否存在内生性问题。原假设是不存在内生性问题,即,你所怀疑的内生变量与干扰项不相关。从结果来看,无法拒绝原假设,即,不存在内生性问题。如果是这样的,后续的检验可能就不需要了,之际做 OLS 即可,它更为有效。
所谓“过度识别检验”说的是,你的工具变量与干扰项不相关,这是保证工具变量合理性的另一个要求。原假设是所有的工具变量与干扰项都不相关。从 Sargan 结果来看,无法拒绝原假设,表明不存在过度识别问题。
所谓“弱工具变量检验”说的是,你所选择的一系列工具变量是否与内生变量之间有足够的相关性。原假设是:工具变量与内生变量不相关。从你的结果来看,拒绝了这个原假设,意味着你选的工具变量与内生变量有统计上显着的相关性。
https://bbs.pinggu.org/thread-4790089-3-1.html
企业数字化、专用知识与组织授权
❽ 计量经济学中x与y到底哪个是回归元与回归子呀 庞皓的书里x是回归元,王少平的书里x却是回归子
回归元就是回归子,说法不同而已
❾ 计量经济学中对设计的模型中的参数如何理解
计量经济学中对设计的模型中的参数的理解:
一是样本与母体的一致性问题。计量经济学模型的参数估计,从数学上讲,是用从母体中随机抽取的个体样本估计母体的参数,那么要求母体与个体必须是一致的。
例如,估计煤炭企业的生产函数模型,只能用煤炭企业的数据作为样本,不能用煤炭行业的数据。那么,截面数据就很难用于一些总量模型的估计。
例如,建立煤炭行业的生产函数模型,就无法得到合适的截面数据。
计量经济模型包括一个或一个以上的随机方程式,它简洁有效地描述、概括某个真实经济系统的数量特征,更深刻地揭示出该经济系统的数量变化规律。是由系统或 方程组成,方程由变量和 系数组成。其中,系统也是由 方程组成。 计量经济模型揭示经济活动中各个因素之间的 定量关系,用随机性的数学方程加以描述。
广义地说,一切包括经济、 数学、统计三者的模型;
狭义地说,仅只用 参数估计和假设检验的 数理统计方法研究经验数据的模型。