① 统计学中的标准差有什么意义
标准差能反映一个数据集的离散程度。
两个班的学生分数,标准差小的说明全班同学的分数和平均分数的距离比较小,标准差大的说明全班同学的成绩和平均分数差的比较大。
标砖差的计算方法是:所有数减去其平均值的平方和,所得结果除以该组数之个数(或个数减一,即变异数),再把所得值开根号,所得之数就是这组数据的标准差。
计算公式
标准差(StandardDeviation),在概率统计中最常使用作为统计分布程度(statisticaldispersion)上的测量。标准差定义是总体各单位标准值与其平均数离差平方的算术平均数的平方根。它反映组内个体间的离散程度。测量到分布程度的结果,原则上具有两种性质:
为非负数值,与测量资料具有相同单位。一个总量的标准差或一个随机变量的标准差,及一个子集合样品数的标准差之间,有所差别。
简单来说,标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。
例如,两组数的集合{0,5,9,14}和{5,6,8,9}其平均值都是7,但第二个集合具有较小的标准差。
标准差可以当作不确定性的一种测量。例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远(同时与标准差数值做比较),则认为测量值与预测值互相矛盾。
② 标准差的意义是什么
公式意义:
所有数减去其平均值的平方和,所得结果除以该组数之个数(或个数减一,即变异数),再把所得值开根号,所得之数就是这组数据的标准差。
深蓝区域是距平均值一个标准差之内的数值范围。在正态分布中,此范围所占比率为全部数值(即1)之68.2%。对于正态分布,两个标准差之内(深蓝,蓝)的比率合起来为95.4%。对于正态分布,正负三个标准差之内(深蓝,蓝,浅蓝)的比率合起来为99.6%。
标准差的性质和应用
标准差在概率统计中最常使用作为统计分布程度上的测量。标准差定义是总体各单位标准值与其平均数离差平方的算术平均数的平方根。它反映组内个体间的离散程度。测量到分布程度的结果,原则上具有两种性质:
为非负数值,与测量资料具有相同单位。一个总量的标准差或一个随机变量的标准差,及一个子集合样品数的标准差之间,有所差别。
简单来说,标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。
③ 方差标准差的意义是什么它们有何特性
一、标准差它反映组内个体间的离散程度。具有两种特性:
测量到分布程度的结果为非负数值,与测量资料具有相同单位。
一个总量的标准差或一个随机变量的标准差,及一个子集合样品数的标准差之间,有所差别。简单来说,标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。
标准差可以当作不确定性的一种测量。
例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:
如果测量平均值与预测值相差太远(同时与标准差数值做比较),则认为测量值与预测值互相矛盾。这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确。
二、方差它反映用来度量随机变量和其数学期望(即均值)之间的偏离程度。具有特性如下
1、设C是常数,则D(C)=0
2、设X是随机变量,C是常数,则有
④ 什么是标准差,有什么意义
http://www.ahscyz.net.cn/wsfw/kxg/shengwu/web1/res/seniorbio/consult/001/0114.htm
标准差
(standarddeviation)样本内各变数变异程度的度量。由样本计算标准差的公式为:
为求和符号。从上可知标准差是反映样本内各个变数与平均数差异大小的一个统计参数。从S可了解样本内各变数的变异程度及样本平均数代表性的可
反之亦然。此外,在生物统计中,还用样本标准差来估计总体标准差。在实践中通常用下式计算样本标准差S。
举例:调查某小组18名学生的身高(cm),其数据为:173,165,154,180,175,170,166,162,158,169,160,174,179,177,
168,157,160,163。经计算得∑x=3010,∑x2=504408,
数的次数分布作出估计,如观察数据属常态分布(正态分布),于是有:在
的范围内;变数的个数约有95.46%落在x±2S的范围内;变数的个数约有
167.2222±7.9303(159.2919~175.1525)厘米的范围内;约有95%的学生身高在167.2222±2×7.9303(151.3616~183.0828)厘米的范围
差是分析数量性状最常用的两个参数。
⑤ 标准差的意义
⑥ 试述标准差的意义和用途
标准差能反映一个数据集的离散程度
⑦ 什么是标准差、极差,他们的意义是什么
标准差指的是这组数据的离差平方和除以数据个数所得商的算术平方根.标准差能综合反映一组数据的离散程度或个别差异程度.
极差是一组数据内最大值 与最小值之差.
⑧ 标准差的意义
1、标准差是方差的算术平方根,意义在于反映一个数据集的离散程度。
2、方差是衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是各个数据分别与其平均数之差的平方的和的平均数。
3、方差的特性在于:方差是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差。 在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定。
⑨ 什么是标准差、极差,他们的意义是什么
标准差(Standard
Deviation)
,中文环境中又常称均方差,但不同于均方误差(mean
squared
error,均方误差是各数据偏离平均数的距离平方的平均数,也即误差平方和的平均数,计算公式形式上接近方差,它的开方叫均方根误差,均方根误差才和标准差形式上接近),标准差是离均差平方和平均后的方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。
极差,是用来表示统计资料中的变异量数(measures
of
variation),其最大值与最小值之间的差距;即最大值减最小值后所得之数据。极差不能用作比较,单位不同
;
方差能用作比较,
因为都是个比率。
⑩ 统计学中的标准差有什么意义
标准差表示的就是样本数据的离散程度。标准差就是样本平均数方差的开平方,标准差通常是相对于样本数据的平均值而定的,通常用M±SD来表示,表示样本某个数据观察值相距平均值有多远。从这里可以看到,标准差受到极值的影响。标准差越小,表明数据越聚集;标准差越大,表明数据越离散。
标准差的大小因测验而定,如果一个测验是学术测验,标准差大,表示学生分数的离散程度大,更能够测量出学生的学业水平。
标准差(Standard Deviation) ,中文环境中又常称均方差,是离均差平方的算术平均数的平方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的两组数据,标准差未必相同。
标准差_网络