‘壹’ 计量经济学中6种模型分别是什么
经济学模型有很多,没有确定的多少种。包括宏观经济学、微观经济学、国际经济学、流通经济学、计量经济学等等,各门课中都有许多相关的经济学模型。如生产模型,索洛模型,罗默模型,IS_ID模型、是IS-LM-BP模型,总需求-总供给模型和蒙代尔弗莱明模型等等。
经济模型是一种分析方法,它极其简单地描述现实世界的情况。现实世界的情况是由各种主要变量和次要变量构成的,非常错综复杂,因而除非把次要的因素排除在外,否则就不可能进行严格的分析,或使分析复杂得无法进行。
通过作出某些假设,可以排除许多次要因子,从而建立起模型。这样一来,便可以通过模型对假设所规定的特殊情况进行分析。经济模型本身可以用带有图表或文字的方程来表示。
理论模型的设计
在单方程模型中,变量分为两类。作为研究对象的变量,也就是因果关系中的“果”,例如生产函数中的产出量,是模型中的被解释变量;而作为“原因”的变量,例如生产函数中的资本、劳动、技术,是模型中的解释变量。确定模型所包含的变量,主要是指确定解释变量。可以作为解释变量的有下列几类变量:外生经济变量、外生条件变量、外生政策变量和滞后被解释变量。其中有些变量,如政策变量、条件变量经常以虚变量的形式出现。
以上内容参考:网络-计量经济模型
‘贰’ 系统gmm,应用GMM时需要注意什么
比如,在微观层面,如果面板的观测值是时序相关的,用GMM估计的动态面板就是一种最自然的解决办法;在宏观研究中,我们经常将理论模型推衍出的一阶条件作为GMM估计的矩条件(moment conditions),理论因而能够得到数据的检验。不过,GMM估计涉及到的矩条件和工具变量的选择,经常让人头疼得要命。这篇短文就是讨论GMM估计中矩条件选择的问题。我不是研究计量经济学的,很多最基本的东西都不懂,下面这些观点大都来自Victor Chernozhukov和Whitney Newey两位老师,引述的不对的地方,请大伙儿指出来。所谓矩条件,就是一个同时含有随机变量和待估计参数的式子,经济理论告诉我们,它的期望等于0。矩条件最常见的形式是:E{工具变量*残差}=0。GMM估计就是在一个限定的范围内寻找参数,使这个我们在理论上认为正确的等式填入数据后尽可能接近于0。按照我的理解,GMM不仅是一种估计方法,还是一个计量经济学有经典框架,我们能想到的大多数经典估计方法
‘叁’ 什么是计量经济模型
计量经济模型包括一个或一个以上的随机方程式,它简洁有效地描述、概括某个真实经济系统的数量特征,更深刻地揭示出该经济系统的数量变化规律。是由系统或 方程组成,方程由变量和 系数组成。其中,系统也是由 方程组成。 计量经济模型揭示经济活动中各个因素之间的 定量关系,用随机性的数学方程加以描述。
广义地说,一切包括经济、 数学、统计三者的模型;
狭义地说,仅只用 参数估计和假设检验的 数理统计方法研究经验数据的模型。
用截面数据作为计量经济学模型的样本数据,应注意以下几个问题。一是样本与母体的一致性问题。计量经济学模型的参数估计,从数学上讲,是用从母体中随机抽取的个体样本估计母体的参数,那么要求母体与个体必须是一致的。例如,估计煤炭企业的生产函数模型,只能用煤炭企业的数据作为样本,不能用煤炭行业的数据。那么,截面数据就很难用于一些总量模型的估计,例如,建立煤炭行业的生产函数模型,就无法得到合适的截面数据。
‘肆’ 计量经济学有哪些模型
计量经济模型是用截面数据作为计量经济学模型的样本数据,应注意以下几个问题。一是样本与母体的一致性问题。计量经济学模型的参数估计,从数学上讲,是用从母体中随机抽取的个体样本估计母体的参数,那么要求母体与个体必须是一致的。例如,估计煤炭企业的生产函数模型,只能用煤炭企业的数据作为样本,不能用煤炭行业的数据。那么,截面数据就很难用于一些总量模型的估计,例如,建立煤炭行业的生产函数模型,就无法得到合适的截面数据。计量经济模型包括一个或一个以上的随机方程式,它简洁有效地描述、概括某个真实经济系统的数量特征,更深刻地揭示出该经济系统的数量变化规律。是由系统或方程组成,方程由变量和系数组成。其中,系统也是由方程组成。计量经济模型揭示经济活动中各个因素之间的定量关系,用随机性的数学方程加以描述。
广义地说,一切包括经济、数学、统计三者的模型;
狭义地说,仅只用参数估计和假设检验的数理统计方法研究经验数据的模型。
‘伍’ 什么情况下用gmm模型
在微观层面,如果面板的观测值是时序相关的,用GMM估计的动态面板就是一种最自然的解决办法;在宏观研究中,经常将理论模型推衍出的一阶条件作为GMM估计的矩条件(moment conditions),理论因而能够得到数据的检验。
为提高模型的学习能力,改进方法对均值和方差的更新采用不同的学习率;为提高在繁忙的场景下,大而慢的运动目标的检测效果,引入权值均值的概念,建立背景图像并实时更新,然后结合权值、权值均值和背景图像对像素点进行前景和背景的分类。
建模过程中,需要对混合高斯模型中的方差、均值、权值等一些参数初始化
并通过这些参数求出建模所需的数据,如马氏距离。在初始化过程中,一般我们将方差设置的尽量大些(如15),而权值则尽量小些(如0.001)。 这样设置是由于初始化的高斯模型是一个并不准确,可能的模型,需要不停的缩小他的范围,更新他的参数值,从而得到最可能的高斯模型,将方差设置大些,就是为了将尽可能多的像素包含到一个模型里面,从而获得最有可能的模型。
以上内容参考:网络-高斯混合模型
‘陆’ 什么是系统GMM,2-step GMM估计,分别的适用条件及中心思想是什么
比如,在微观层面,如果面板的观测值是时序相关的,用GMM估计的动态面板就是一种最自然的解决办法;在宏观研究中,我们经常将理论模型推衍出的一阶条件作为GMM估计的矩条件(moment conditions),理论因而能够得到数据的检验。
‘柒’ 计量经济学模型主要有哪些应用领域,各自的原理是什么
计量经济学模型的应用大体可以概括为四个方面:
1结构分析,即研究一个或几个经济变量发生变化及结构参数的变动对其他变量以致整个经济系统产生何种影响。其原理是弹性分析、乘数分析与比较静态分析;
2经济预测,即用其进行中短期经济的因果预测。其原理是模拟历史,从已经发生的经济活动中找出变化规律;
3政策评价,即利用计量经济模型定量分析政策变量变化对经济系统运行的影响,是对不同政策执行情况的模拟仿真;
4检验与发展经济理论,即利用时机的统计资料和计量经济学模型实证分析某个理论假说正确与否。其原理是如果按照某种经济理论建立的计量经济模型能够很好地拟合实际观察数据,则意味着该理论是符合客观事实的,反之则表明该理论不能解释客观事实。
‘捌’ 计量经济学问题
不知从何时起,解答计量问题成了我日常生活的一部分。天南海北的读者与同道提出了各种各样的计量问题。这里摘取少量的典型问题,希望对从事实证研究的朋友有帮助。
1、在什么情况下,应将变量取对数再进行回归?
答:可以考虑以下几种情形。
,如果理论模型中的变量为对数形式,则应取对数。比如,在劳动经济学中研究教育投资回报率的决定因素,通常以工资对数为被解释变量,因为这是从Mincer模型推导出来的。
第二,如果变量有指数增长趋势(exponential growth),比如 GDP,则一般取对数,使得 lnGDP 变为线性增长趋势(linear growth)。
第三,如果取对数可改进回归模型的拟合优度(比如 R2 或显着性),可考虑取对数。
第四,如果希望将回归系数解释为弹性或半弹性(即百分比变化),可将变量取对数。
第五,如果无法确定是否该取对数,可对两种情形都进行估计,作为稳健性检验(robustnesscheck)。若二者的回归结果类似,则说明结果是稳健的。
2、如何理解线性回归模型中,交互项(interactive term)系数的经济意义?
答:在线性回归模型中,如果不存在交互项或平方项等非线性项,则某变量的回归系数就表示该变量的边际效应(marginal effect)。比如,考虑回归方程
y = 1 + 2x + u
其中, u 为随机扰动项。显然,变量x 对 y 的边际效应为 2,即 x 增加一单位,平均而言会使 y 增加两单位。考虑在模型中加入交互项,比如
y = α + βx + γz + δxz+ u
其中, x 与 z 为解释变量,而 xz 为其交互项(交叉项)。由于交互项的存在,故x 对 y 的边际效应(求偏导数)为β + δz,这说明 x 对 y 的边际效应并非常数,而依赖于另一变量z 的取值。如果交互项系数 δ 为正数,则 x 对 y 的边际效应随着 z 的增加而增加(比如,劳动力的边际产出正向地依赖于资本);反之,如果δ 为负数,则 x 对 y 的边际效应随着z 的增加而减少。
3、在一些期刊上看到回归模型中引入控制变量。控制变量究竟起什么作用,应该如何确定控制变量呢?
答:在研究中,通常有主要关心的变量,其系数称为 “parameterof interest” 。但如果只对主要关心的变量进行回归(极端情形为一元回归),则容易存在遗漏变量偏差(omittedvariable bias),即遗漏变量与解释变量相关。加入控制变量的主要目的,就是为了尽量避免遗漏变量偏差,故应包括影响被解释变量 y 的主要因素(但允许遗漏与解释变量不相关的变量)。
4、很多文献中有 “稳健性检验” 小节,请问是否每篇实证都要做这个呢?具体怎么操作?
答:如果你的论文只汇报一个回归结果,别人是很难相信你的。所以,才需要多做几个回归,即稳健性检验(robustness checks)。没有稳健性检验的论文很难发表到好期刊,因为不令人信服。稳健性检验方法包括变换函数形式、划分子样本、使用不同的计量方法等,可以参见我的教材。更重要的是,向同领域的经典文献学习,并模仿其稳健性检验的做法。
5、对于面板数据,一定要进行固定效应、时间效应之类的推敲么?还是可以直接回归?我看到很多文献,有的说明了使用固定效应模型的原因,有的则直接回归出结果,请问正确的方法是什么?
答:规范的做法需要进行豪斯曼检验(Hausman test),在固定效应与随机效应之间进行选择。但由于固定效应比较常见,而且固定效应模型总是一致的(随机效应模型则可能不一致),故有些研究者就直接做固定效应的估计。
对于时间效应也同时考虑,比如,加入时间虚拟变量或时间趋势项;除非经过检验,发现不存在时间效应。如果不考虑时间效应,则你的结果可能不可信(或许x 与 y 的相关性只是因为二者都随时间而增长)。
6、如何决定应使用二阶段最小二乘法(2SLS)还是广义矩估计(GMM)?
答:如果模型为恰好识别(即工具变量个数等于内生变量个数),则GMM完全等价于2SLS,故使用2SLS就够了。在过度识别(工具变量多于内生变量)的情况下,GMM的优势在于,它在异方差的情况下比2SLS更有效率。由于数据或多或少存在一点异方差,故在过度识别情况下,一般使用GMM。
7、在面板数据中,感兴趣的变量x 不随时间变化,是否只能进行随机效应的估计(若使用固定效应,则不随时间变化的关键变量 x 会被去掉)?
答:通常还是使用固定效应模型为好(当然,可进行正式的豪斯曼检验,以确定使用固定效应或随机效应模型)。如果使用固定效应,有两种可能的解决方法:
(1)如果使用系统GMM估计动态面板模型,则可以估计不随时间而变的变量x 的系数。
(2)在使用静态的面板固定效应模型时,可引入不随时间而变的变量 x与某个随时间而变的变量 z 之交互项,并以交互项 xz (随时间而变)作为关键解释变量。