A. 我需要10個二年級的數學小故事
1、泰勒斯看到人們都在看告示,便上去看。原來告示上寫著法老要找世界上最聰明的人來測量金字塔的高度。於是就找法老。
法老問泰勒斯用什麼工具來量金字塔。泰勒斯說只用一根木棍和一把尺子,他把木棍插在金字塔旁邊,等木棍的影子和木棍一樣長的時候,他量了金字塔影子的長度和金字塔底面邊長的一半。把這兩個長度加起來就是金字塔的高度了。泰勒斯真是世界上最聰明的人,他不用爬到金字塔的頂上就方便量出了金字塔的高度。
2、戰國時期,齊威王與大將田忌賽馬,齊威王和田忌各有三匹好馬:上馬,中馬與下馬。比賽分三次進行,每賽馬以千金作賭。由於兩者的馬力相差無幾,而齊威王的馬分別比田忌的相應等級的馬要好,所以一般人都以為田忌必輸無疑。
但是田忌採納了門客孫臏(著名軍事家)的意見,用下馬對齊威王的上馬,用上馬對齊威王的中馬,用中馬對齊威王的下馬,結果田忌以2比1勝齊威王而得千金。這是我國古代運用對策論思想解決問題的一個範例。
3、動物學校舉辦兒歌比賽,大象老師做裁判。
小猴第一個舉手,開始朗誦:「進位加法我會算,數位對齊才能加。個位對齊個位加,滿十要向十位進。十位相加再加一,得數算得快又准。」
小猴剛說完,小狗又開始朗誦:「退位減法並不難,數位對齊才能減。個位數小不夠減,要向十位借個一。十位退一是一十,退了以後少個一。十位數字怎麼減,十位退一再去減。」
大家都為它們的精彩表演鼓掌。大象老師說:「它們的兒歌讓我們明白了進位加法和退位減法,它們兩個都應該得冠軍,好不好?」大家同意並鼓掌祝賀它們。
4、氣象學家Lorenz提出一篇論文,名叫《一隻蝴蝶拍一下翅膀會不會在Taxas州引起龍卷風?》論述某系統如果初期條件差一點點,結果會很不穩定,他把這種現象戲稱做「蝴蝶效應」。就像我們投擲骰子兩次,無論我們如何刻意去投擲,兩次的物理現象和投出的點數也不一定是相同的。Lorenz為何要寫這篇論文呢?
這故事發生在1961年的某個冬天,他如往常一般在辦公室操作氣象電腦。平時,他只需要將溫度、濕度、壓力等氣象數據輸入,電腦就會依據三個內建的微分方程式,計算出下一刻可能的氣象數據,因此模擬出氣象變化圖。
5、唐僧師徒四人走在無邊無際的沙漠上,他們又餓又累,豬八戒想:如果有一頓美餐該有多好啊!孫悟空可沒有八戒那麼貪心,悟空只想喝一杯水就夠了。
孫悟空想著想著,眼前就出現了一戶人家,門口的桌上正好放了一杯牛奶,孫悟空連忙上前,准備把這杯牛奶喝了,可主人家卻說:「大聖且慢,如果您想喝這杯奶就必須回答對一道數學題。」
孫悟空想,不就一道數學題嗎,難不倒俺老孫。孫悟空就答應了。那位主人家出題:倒了一杯牛奶,你先喝了1/2加滿水,再喝1/3,又加滿水,最後把這杯飲料全喝下,問你喝的牛奶和水哪個多些?為什麼?
6、傍晚,我在奧林匹克書中看到一道難題:果園里的蘋果樹是梨樹的3倍,老王師傅每天給50棵蘋果樹20棵梨樹施肥,幾天後,梨樹全部施上肥,但蘋果樹還剩下80棵沒施肥。請問:果園里有蘋果樹和梨樹各多少棵?
我沒有被這道題嚇倒,難題能激發我的興趣。我想,蘋果樹是梨樹的3倍,假如要使兩種樹同一天施完肥,老王師傅就應該每天給「20×3」棵蘋果樹和20棵梨樹施肥。
而實際他每天只給50棵蘋果樹施肥,差了10棵,最後共差了80棵,從這里可以得知,老王師傅已經施了8天肥。一天20棵梨樹,8天就是160棵梨樹,再根據第一個條件,可以知道蘋果樹是480棵。這就是用假設的思路來解題,因此我想,假設法實在是一種很好的解題方法。
7、阿基米德有許多故事,其中最著名的要算發現阿基米德定律的那個洗澡的故事了。
國王做了一頂金王冠,他懷疑工匠用銀子偷換了一部分金子,便要阿基米德鑒定它是不是純金制的,且不能損壞王冠。阿基米德捧著這頂王冠整天苦苦思索,有一天,阿基米德去浴室洗澡,他跨入浴桶,隨著身子浸入浴桶,一部分水就從桶邊溢出,阿基米德看到這個現象,頭腦中像閃過一道閃電,「我找到了!」
阿基米德拿一塊金塊和一塊重量相等的銀塊,分別放入一個盛滿水的容器中,發現銀塊排出的水多得多。
於是阿基米德拿了與王冠重量相等的金塊,放入盛滿水的容器里,測出排出的水量;再把王冠放入盛滿水的容器里,看看排出的水量是否一樣,問題就解決了。隨著進一步研究,沿用至今的流體力學最重要基石——阿基米德定律誕生了。
8、當高斯還在上小學二年級的時候,有一天他的數學老師因為想借上課的時間處理一些自己的私事,因此打算出一道難題給學生練習。他的題目是:1+2+3+4+5+6+7+8+9+10=?
因為加法剛教不久,所以老師覺得出了這題,學生肯定是要算蠻久的。自己也就可以藉此機會來處理未完的事情。但是才一轉眼的時間,高斯已停下了筆,閑閑地坐在那裡。老師看了,很生氣地訓斥高斯。
但是高斯卻說他已經將答案算出來了,就是55。老師聽了嚇了一跳,就問高斯如何算出來的。高斯答道:「我只是發現1和10的和是11、2和9的和也是11、3和8的和也是11、4和7的和也是11、5和6的和還是11,又因為11+11+11+11+11=55,所以我就是這么算出來了。
」老師同學聽了以後,都對高斯豎起了大拇指。後來的高斯長大後,成為了一位很偉大的數學家
10、宋代大詩人蘇東坡年輕時與幾個學友進京考試.他們到達試院時為時已晚.考官說:'我出一聯,你們若對得上,我就讓你們進考場.'考官的上聯是:一葉孤舟,坐了二三個學子,啟用四槳五帆,經過六灘七灣,歷盡八顛九簸,可嘆十分來遲.
蘇東坡對出的下聯是:十年寒窗,進了九八家書院,拋卻七情六慾,苦讀五經四書,考了三番兩次,今日一定要中.考官與蘇東坡都將一至十這十個數字嵌入對聯中,將讀書人的艱辛與刻苦情況描寫得淋漓盡致.
11、學習數學不僅解題思路要正確,具體解題過程也不能出錯,差之毫釐,往往失之千里.
美國芝加哥一個靠養老金生活的老太太,在醫院施行一次小手術後回家.兩星期後,她接到醫院寄來的一張帳單,款數是63440美元.她看到偌大的數字,不禁大驚失色,駭得心臟病猝發,倒地身亡.後來,有人向醫院一核對,原來是電腦把小數點的位置放錯了,實際上只需要付63.44美元.
點錯一個小數點,竟要了一條人命.正如牛頓所說:'在數學中,最微小的誤差也不能忽略.
12、二十一世紀從哪年開始?
世紀是計算年代的單位,一百年為一個世紀。
第一世紀的起始年和末尾年,分別是公元1年和公元100年.常見的錯誤是有人把起始年當作是公元零年,這顯然不符合邏輯和我們的習慣,因為在一般情況下,序數的計算是從「1」開始的,而不是從「0」開始的。
而正是這個理解上的錯誤,所以才導致了世紀末尾年為公元99年的錯誤認識,這也是錯把1999年當作是二十世紀末尾年,錯把2000年當作是二十一世紀起始年的原因.因為公元計數是序數,所以應該從「1」開始,21世紀的第一年是2001年.